In recent years, progress in understanding the genetic basis of idiopathic generalized epilepsies has proven challenging because of their complex inheritance patterns and genetic heterogeneity. Genetic polymorphisms offer a convenient avenue for a better understanding of the genetic basis of idiopathic generalized epilepsy by providing evidence for the involvement of a given gene in these disorders, and by clarifying its pathogenetic mechanisms. Many of these genes encode for some important central nervous system ion channels (KCNJ10, KCNJ3, KCNQ2/KCNQ3, CLCN2, GABRG2, GABRA1, SCN1B, and SCN1A), while many others encode for ubiquitary enzymes that play crucial roles in various metabolic pathways (HP, ACP1, ME2, LGI4, OPRM1, GRIK1, BRD2, EFHC1, and EFHC2). We review the main genetic polymorphisms reported in idiopathic generalized epilepsy, and discusses their possible functional significance in the pathogenesis of seizures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pediatrneurol.2007.06.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!