Anabaena PCC 7120 nifHDK operon is interrupted by an 11 kb DNA element which is excised during the development of heterocysts by Excisase A, encoded by the xisA gene residing on the element. The excision is a site-specific recombination event that occurs at the 11 base pair direct repeats flanking the element. Earlier work showed the excision of the 11 kb element in Escherichia coli at a frequency 0.3%. We report here the excision of this element at 1.1% and 1.98% in E. coli DH5alpha, and 1.9% and 10.9% in E. coli JM 101 when grown on Luria broth and minimal media, respectively. Excision of nifD element in isogenic recA(-) (RK1) and recA+ (RK2) E. coli JM101 P1 transductants, showed similar results to that of E. coli JM101 and DH5alpha, respectively. A plasmid pMX32, carrying a xisA defective 11kb element, showed no excision in E. coli RK2 strain. In contrast to Anabaena PCC 7120, excision of nifD element did not increase in E. coli DH5alpha grown in iron-deficient conditions. A PxisA::lacZ transcriptional fusion, used to detect the expression of elusive xisA gene, showed maximal beta-galactosidase activity in the stationary phase. The results suggest that the excision event in E. coli may involve additional factors, such as RecA and that the physiological status can influence the excision of nifD element.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2007.07.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!