The growth kinetics and variations in cell wall matrix polysaccharides and glycoside hydrolases during seedling development of the drought-tolerant wheat cultivar (cv. Hong Mang Mai) were compared with the drought-sensitive cultivar (cv. Shirasagikomugi). After 15 d of culture in water at 22 degrees C under constant irradiance of 98 micromol m(-2) s(-1), the length of the coleoptile and leaf sheath of Hong Mang Mai seedlings was 1.7 times longer than those of Shirasagikomugi seedlings. In the cell walls isolated from coleoptiles and leaf sheaths of the seedling of the two cultivars, the contents of arabinose, xylose, and glucose changed during development. The cell walls were fractionated progressively with 50 mM CDTA, 50 mM Na(2)CO(3), 1 M KOH and 4 M KOH, and sugar composition was determined. The amount of CDTA-soluble fraction from the Hong Mang Mai cell walls was 2.4-fold higher than that from the Shirasagikomugi cell walls at 6 d of culture, and a considerable decrease was observed during development. The ratio of arabinose to xylose in 1 M KOH-soluble fraction from the two cultivars decreased. The amount of 4 M KOH-soluble fraction from the Shirasagikomugi cell walls was affected much more than those of the Hong Mang Mai cell walls. Many glycoside hydrolase activities were detected in the protein fractions from coleoptiles and leaf sheaths of the two cultivars, and the activities of licheninase, 1,3-1,4-beta-glucanase, and 1,3-beta-glucanase in the LiCl-soluble protein fraction increased drastically during development of the Shirasagikomugi seedlings. These findings suggest that the metabolism of the cell wall matrix polysaccharides of the drought-tolerant wheat cultivar is far different from that of the drought-sensitive wheat cultivar during seedling development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2007.07.007DOI Listing

Publication Analysis

Top Keywords

cell walls
24
hong mang
16
mang mai
16
cell wall
12
wall matrix
12
matrix polysaccharides
12
wheat cultivar
12
cell
9
seedling development
8
drought-tolerant wheat
8

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!