The dynamic structure factor S(Q,omega) of liquid ammonia has been measured by inelastic x-ray scattering in the terahertz frequency region as a function of the temperature in the range of 220-298 K at a pressure P=85 bars. The data have been analyzed using the generalized hydrodynamic formalism with a three term memory function to take into account the thermal, the structural, (alpha) and the microscopic (mu) relaxation processes affecting the dynamics of the liquid. This allows to extract the temperature dependence of the structural relaxation time (tau(alpha)) and strength (Delta(alpha)). The former quantity follows an Arrhenius behavior with an activation energy E(a)=2.6+/-0.2 kcal/mol, while the latter is temperature independent suggesting that there are no changes in the interparticle potential and arrangement with T. The obtained results, compared with those already existing in liquid water and liquid hydrogen fluoride, suggest the strong influence of the connectivity of the molecular network on the structural relaxation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2753161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!