Tensor product approximation with optimal rank in quantum chemistry.

J Chem Phys

Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstrasse 22-26, D-04103 Leipzig, Germany.

Published: August 2007

Tensor product decompositions with optimal separation rank provide an interesting alternative to traditional Gaussian-type basis functions in electronic structure calculations. We discuss various applications for a new compression algorithm, based on the Newton method, which provides for a given tensor the optimal tensor product or so-called best separable approximation for fixed Kronecker rank. In combination with a stable quadrature scheme for the Coulomb interaction, tensor product formats enable an efficient evaluation of Coulomb integrals. This is demonstrated by means of best separable approximations for the electron density and Hartree potential of small molecules, where individual components of the tensor product can be efficiently represented in a wavelet basis. We present a fairly detailed numerical analysis, which provides the basis for further improvements of this novel approach. Our results suggest a broad range of applications within density fitting schemes, which have been recently successfully applied in quantum chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2761871DOI Listing

Publication Analysis

Top Keywords

tensor product
20
quantum chemistry
8
best separable
8
tensor
6
product approximation
4
approximation optimal
4
optimal rank
4
rank quantum
4
chemistry tensor
4
product
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!