Extrapolation of electron correlation energies to finite and complete basis set targets.

J Chem Phys

Laboratory of Physical Chemistry, ETH Zürich, CH 8093 Zürich, Switzerland.

Published: August 2007

The electron correlation energy of two-electron atoms is known to converge asymptotically as approximately (L+1)(-3) to the complete basis set limit, where L is the maximum angular momentum quantum number included in the basis set. Numerical evidence has established a similar asymptotic convergence approximately X(-3) with the cardinal number X of correlation-consistent basis sets cc-pVXZ for coupled cluster singles and doubles (CCSD) and second order perturbation theory (MP2) calculations of molecules. The main focus of this article is to probe for deviations from asymptotic convergence behavior for practical values of X by defining a trial function X(-beta) that for an effective exponent beta=beta(eff)(X,X+1,X+N) provides the correct energy E(X+N), when extrapolating from results for two smaller basis sets, E(X) and E(X+1). This analysis is first applied to "model" expansions available from analytical theory, and then to a large body of finite basis set results (X=D,T,Q,5,6) for 105 molecules containing H, C, N, O, and F, complemented by a smaller set of 14 molecules for which accurate complete basis set limits are available from MP2-R12 and CCSD-R12 calculations. beta(eff) is generally found to vary monotonically with the target of extrapolation, X+N, making results for large but finite basis sets a useful addition to the limited number of cases where complete basis set limits are available. Significant differences in effective convergence behavior are observed between MP2 and CCSD (valence) correlation energies, between hydrogen-rich and hydrogen-free molecules, and, for He, between partial-wave expansions and correlation-consistent basis sets. Deviations from asymptotic convergence behavior tend to get smaller as X increases, but not always monotonically, and are still quite noticeable even for X=5. Finally, correlation contributions to atomization energies (rather than total energies) exhibit a much larger variation of effective convergence behavior, and extrapolations from small basis sets are found to be particularly erratic for molecules containing several electronegative atoms. Observed effects are discussed in the light of results known from analytical theory. A carefully calibrated protocol for extrapolations to the complete basis set limit is presented, based on a single "optimal" exponent beta(opt)(X,X+1,infinity) for the entire set of molecules, and compared to similar approaches reported in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2749516DOI Listing

Publication Analysis

Top Keywords

basis set
28
complete basis
20
basis sets
20
convergence behavior
16
basis
12
asymptotic convergence
12
set
9
electron correlation
8
correlation energies
8
set limit
8

Similar Publications

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

Background: Breast cancer-related lymphedema (BCRL) is one of the common complications after breast cancer surgery. It can easily lead to limb swelling, deformation and upper limb dysfunction, which has a serious impact on the physical and mental health and quality of life of patients. Previous studies have mostly used statistical methods such as linear regression and logistic regression to analyze the influencing factors, but all of them have certain limitations.

View Article and Find Full Text PDF

Background: Tracheal extubation failure after cardiac surgery is associated with diminished cough strength, albeit the information on cough strength in post-cardiac surgery patients is limited.

Aim: To investigate the cough strength in patients after cardiac surgery before tracheal extubation and the related influencing factors.

Study Design: A cross-sectional study was designed, with adherence to the STROBE guidelines.

View Article and Find Full Text PDF

Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.

View Article and Find Full Text PDF

Objective: Non-puerperal mastitis (NPM) is an inflammatory breast disease affecting women during non-lactation periods, and it is prone to relapse after being cured. Accurate prediction of its recurrence is crucial for personalized adjuvant therapy, and pathological examination is the primary basis for the classification, diagnosis, and confirmation of non-puerperal mastitis. Currently, there is a lack of recurrence models for non-puerperal mastitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!