In present study the relevance of using the time-dependent density functional theory (DFT) within the adiabatic approximation for computing oscillator strengths (f) is assessed using different LDA, GGA, and hybrid exchange-correlation (XC) functionals. In particular, we focus on the lowest-energy valence excitations, dominating the UV/visible absorption spectra and originating from benzenelike HOMO(pi)-->LUMO(pi(*)) transitions, of several aromatic molecules: benzene, phenol, aniline, and fluorobenzene. The TDDFT values are compared to both experimental results obtained from gas phase measurements and to results determined using several ab initio schemes: random phase approximation (RPA), configuration interaction single (CIS), and a series of linear response coupled-cluster calculations, CCS, CC2, and CCSD. In particular, the effect of the amount of Hartree-Fock (HF) exchange in the functional is highlighted, whereas a basis set investigation demonstrates the need of including diffuse functions. So, the hybrid XC functionals--and particularly BHandHLYP--provide f values in good agreement with the highly correlated CCSD scheme while these can be strongly underestimated using pure DFT functionals. These results also display systematic behaviors: (i) larger f and squares of the transition dipole moments (mid R:mumid R:(2)) are associated with larger excitation energies (DeltaE); (ii) these relationships present generally a linear character with R>0.9 in least-squares fit procedures; (iii) larger amounts of HF exchange in the XC functional lead to larger f, R:mumid R:(2), as well as DeltaE values; (iv) these increases in f, mid R:mumid R:(2), and DeltaE are related to increased HOMO-LUMO character; and (v) these relationships are, however, not universal since the linear regression parameters (the slopes and the intercepts at the origin) depend on the system under investigation as well as on the nature of the excited state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2761886 | DOI Listing |
Chem Biodivers
January 2025
Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
One new monomeric citrinin analog (1) and 42 known compounds (2-43) were isolated from Penicillium citrinum W22. The structure of 1 was determined by detailed analysis of the 1D and 2D nuclear magnetic resonance (NMR), HRESIMS, and time-dependent density functional theory (TD-DFT)-based electronic circular dichroism (ECD) calculation. Penicitrinol A (2) and methyl 2-(2-acetyl-3,5-dihydroxy-4,6-dimethylphenyl) acetate (11) significantly inhibited renin-angiotensin system-selective lethal 3 (RSL3)-induced ferroptosis with half maximal effective concentration (EC) values of 1.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
2-(2-Hydroxyphenyl)benzothiazole (HBT) derivatives with donor-π-acceptor (D-π-A) structure have received extensive attention as a class of excited state intramolecular proton transfer (ESIPT) compounds in the fields of biochemistry and photochemistry. The effects of electron-donors (triphenylamine and anthracenyl), the position of substituents and solvent polarity on the fluorescence properties and ESIPT mechanisms of HBT derivatives were investigated through time-dependent density functional theory (TDDFT) calculations. Potential energy curves (PECs) and frontier molecular orbitals (FMOs) reveal that the introduction of the triphenylamine group on the benzene ring enhances intramolecular HB, thereby benefiting the ESIPT process.
View Article and Find Full Text PDFSci Rep
January 2025
Nonprofitable Organization Touche NPO, Sapporo, 060-004, Japan.
In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
An isostructural series of four annulated actinocene complexes, M(hdcCOT) (M = Th, U, Np, Pu), is reported. The syntheses proceed through a trivalent starting material when M = U, Np, Pu with subsequent oxidation or, in the case of M = Th, directly from ThCl(DME). X-ray crystallography shows that each actinocene has molecular point symmetry in the solid state, with the metal atoms symmetrically bonded to two 10π-aromatic [8]annulene dianion rings.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, 260, Gonghang-daero, Gangseo-gu, Seoul, 07804, Republic of Korea.
The association between insulin resistance and increased risk of Parkinson's disease (PD) has rarely been investigated. Our study aimed to investigate the association between the triglyceride/high-density lipoprotein (TG/HDL) ratio (which represents insulin resistance), and the incidence risk of PD in the general population. This study was conducted using data from the National Health Insurance Service-Health Screening Cohort Database of South Korea (2002-2019).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!