Download full-text PDF

Source
http://dx.doi.org/10.1021/ja074332gDOI Listing

Publication Analysis

Top Keywords

radical trifluoromethylation
4
trifluoromethylation sc3n@c80
4
radical
1
sc3n@c80
1

Similar Publications

Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting.

Anal Chem

December 2024

Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, United States.

Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>10) dynamic range of AA reactivity with OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low OH reactivities.

View Article and Find Full Text PDF

A Comparative Theoretical Study of the Atmospheric Chemistry of Dimethyl and Bis(trifluoromethyl) Sulfides.

J Phys Chem A

December 2024

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.

Dimethyl sulfide (CHSCH) is the largest natural source of atmospheric sulfur. Bis(trifluoromethyl) sulfides (CFSCF) are one of the perfluorinated thioethers with great interest as the new refrigerant fluid and dielectric replacement gas for the sake of environmental concern. In order to clarify the effect of fluorine substitution, degradation mechanisms and kinetics for the reactions of CHSCH and CFSCF with OH radicals in the atmosphere have been calculated comprehensively in a comparative manner using various high-level methods.

View Article and Find Full Text PDF

Radical α-C-H Alkylation and Heteroarylation of Benzyl Anilines Enabled by Organic Photoredox Catalysis.

Org Lett

December 2024

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China.

A photocatalysis-involved α-amino radical provides an appealing approach for rapid construction of complex amine architectures. Reported herein is an organophotoredox catalytic approach to α-C-H alkylation and heteroarylation of benzyl anilines, which enables the introduction of valuable trifluoromethyl alcohol, chromanone, or pyridine motifs at the α position of amines. This protocol highlights metal-free, step and atom economies and broad substrate scopes (>80 examples).

View Article and Find Full Text PDF

A mild and general method for photoredox-catalyzed trifluoromethylative and pentafluoroethylative heterofunctionalization of alkenes is proposed. In this reaction, the Togni reagent serves as a CF- or CFCF-radical source for the regioselective formation of the C-CF and C-CFCF bonds from alkenes, and additional nucleophiles (O, S, N) provide C-O, C-S, and C-N bonds, respectively. These reactions provide a common gateway to access the fluoroalkylative heterofunctionalization of alkenes.

View Article and Find Full Text PDF

We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (EtN), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF alkene via a single electron transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!