AI Article Synopsis

  • High-quality poly (5-nitroindole) (PNI) films can be made by electrochemically oxidizing 5-nitroindole in a specific solvent, BFEE, at varying potentials between 1.23-2.23 V.
  • This process marks the first instance of creating high-quality nitro-substituted conducting polymer films through electrodeposition.
  • The study found that lower polymerization potentials improved film quality by allowing better electrochemical polymerization and longer conjugation lengths, while higher potentials caused undesirable side reactions, decreasing film quality.

Article Abstract

High quality poly (5-nitroindole) (PNI) films can be synthesized electrochemically by direct anodic oxidation of 5-nitroindole (NI) in boron trifluoride diethyl etherate (BFEE) at different polymerization potential in the range of 1.23-2.23 V (vs. SCE). To the best of our knowledge, this is the first time that high quality polymer films of nitro group substituted conducting polymers were electrodeposited. The oxidation onset potential of NI was only 1.04 V vs. SCE in this medium. Chronoamperometric response of NI, FTIR and 1H NMR indicated that the polymerization potential had a great effect on the quality of PNI films. Lower potential is helpful for the electrochemical polymerization of NI and the extension of the conjugation length of PNI. On the other hand, a higher potential led to side reactions and poor polymer film quality. The structural characterization of PNI films by FTIR and 1H NMR indicated that the electrochemical polymerization of NI occurred at C2 and C3 positions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

polymerization potential
12
pni films
12
poly 5-nitroindole
8
high quality
8
ftir nmr
8
nmr indicated
8
electrochemical polymerization
8
potential
6
polymerization
5
[spectral analysis
4

Similar Publications

Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.

View Article and Find Full Text PDF

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!