A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.21366 | DOI Listing |
Med Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Leiden University Medical Center (LUMC), Leiden, the Netherlands.
Rising computed tomography (CT) workloads require more efficient image interpretation methods. Digitally reconstructed radiographs (DRRs), generated from CT data, may enhance workflow efficiency by enabling faster radiological assessments. Various techniques exist for generating DRRs.
View Article and Find Full Text PDFPhys Med Biol
January 2025
School of Biomedical Engineering, ShanghaiTech University, No. 1 Zhongke Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.
Objective: This study aims to propose a dual-domain network that not only reduces scatter artifacts but also retains structure details in CBCT.
Approach: The proposed network comprises a projection-domain sub-network and an image-domain sub-network. The projection-domain sub-network utilizes a division residual network to amplify the difference between scatter signals and imaging signals, facilitating the learning of scatter signals.
J Hazard Mater
January 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.
View Article and Find Full Text PDFUnlabelled: TKA is routinely done orthopaedic procedure done that aims at improving the quality of patients' life by providing pain relief, functional improvement and deformity correction. This study aims to study the efficacy and safety of a Periarticular analgesic cocktail including ropivacaine injection and epidural ropivacaine for early rehabilitation after a total knee replacement.
Methods: Total of 100 patients divided into two groups, one group received epidural ropivacaine and second group given periarticular cocktail containing ropivacaine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!