Recombinant sea urchin flagellar adenylate kinase.

J Biochem

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA.

Published: October 2007

Adenylate kinase (AK) is localized in sea urchin sperm flagella and embryonic cilia. To investigate sea urchin Strongylocentrotus purpuratus AK (SpAK) enzymatic characteristics, the full-length recombinant protein of 130 kDa (SpAKr) and each of its three catalytic domains were expressed in Escherichia coli. Although the full-length SpAK had high enzymatic activity, each of the three catalytic domains had no activity. The Km for ATP synthesis from ADP was 0.23 mM and the Vmax was 4.51 mumol ATP formed per minute per milligram of protein. The specific AK inhibitor, Ap5A, blocks SpAKr enzymatic activity with an IC50 of 0.53 microM. The pH optimum for SpAKr is 8.1, as compared to 7.7 for the natural SpAK. Calcium inhibits SpAKr activity in a dose-dependent manner. Although SpAKr has three cAMP-dependent protein kinase phosphorylation sites, and can be phosphorylated in vitro, the enzymatic kinetics after phosphorylation are not significantly altered. SpAK and Chlamydomonas flagellar AKs are the only AKs with three catalytic sites. Further study of the SpAKr will aid in understanding the active site of this interesting and important ATP synthase.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvm154DOI Listing

Publication Analysis

Top Keywords

sea urchin
12
three catalytic
12
adenylate kinase
8
spakr three
8
catalytic domains
8
enzymatic activity
8
spakr
6
recombinant sea
4
urchin flagellar
4
flagellar adenylate
4

Similar Publications

Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.

View Article and Find Full Text PDF

This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.

View Article and Find Full Text PDF

The oral administration of drugs for cancer therapy can maintain optimal blood concentrations, is biologically safe and simple, and is preferred by many patients. However, the complex lumen environment, mucus layer, and intestinal epithelial cells are biological barriers that hinder the absorption of orally administered drugs. In this study, sea urchin-like manganese-doped copper selenide nanoparticles (Mn-CuSe NPs) were designed using an anion exchange method and coated with calcium alginate and chitosan (AC) to form Mn-CuSe@AC capsules.

View Article and Find Full Text PDF

The red spotting disease harms sea urchins to the extent of mass mortality in the ocean and echinocultures, accompanied by environmental damage and economic losses. The current study emphasizes the antimicrobial resistance of three isolated bacteria, closely related to , , and , associated with red spotting in the cultured sea urchin . In vitro trials examined the susceptibility of these bacterial isolates to various antibiotics.

View Article and Find Full Text PDF

The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!