Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues.

J Biochem

Department of Biochemistry and Center for Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.

Published: October 2007

A new luciferase from V. campbellii (Lux_Vc) was cloned and expressed in Escherichia coli and purified to homogeneity. Although the amino acid sequences and the catalytic reactions of Lux_Vc are highly similar to those of the luciferase from V. harveyi (Lux_Vh), the two enzymes have different affinities toward reduced FMN (FMNH(-)). The catalytic reactions of Lux_Vc and Lux Vh were monitored by stopped-flow absorbance and luminescence spectroscopy at 4 degrees C and pH 8. The measured Kd at 4 degrees C for the binding of FMNH(-) to Lux_Vc was 1.8 microM whereas to Lux_Vh, it was 11 microM. Another difference between the two enzymes is that Lux_Vc is more stable than Lux_Vh over a range of temperatures; Lux_Vc has t1/2 of 1020 min while Lux_Vh has t1/2 of 201 min at 37 degrees C. The superior thermostability and tighter binding of FMNH(-) make Lux_Vc a more tractable luciferase than Lux_Vh for further structural and functional studies, as well as a more suitable enzyme for some applications. The kinetics results reported here reveal transient states in the reaction of luciferase that have not been documented before.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvm155DOI Listing

Publication Analysis

Top Keywords

reduced fmn
8
catalytic reactions
8
reactions lux_vc
8
binding fmnh-
8
fmnh- lux_vc
8
lux_vc
7
luciferase
5
lux_vh
5
luciferase vibrio
4
vibrio campbellii
4

Similar Publications

Extracts of Achillea millefolium L. inhibited biofilms and biofilm-related virulence factors of pathogenic bacteria isolated from wounds.

Microb Pathog

December 2024

University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia. Electronic address:

Biofilm is a surface-attached community of bacterial cells implicated in the pathogenesis of chronic infections and is highly resistant to antibiotics. New alternatives for controlling bacterial infections have been proposed focusing on the therapeutic properties of medicinal plants. Achillea millefollium (Yarrow) is a widespread plant species that is widely used in traditional medicine, especially for wound healing.

View Article and Find Full Text PDF

More Pieces of the Puzzle: Transient State Analysis of Dihydroorotate Dehydrogenase B from .

Biochemistry

December 2024

Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W Sheridan Rd, Chicago, Illinois 60660, United States.

Dihydroorotate dehydrogenases (DHODs) catalyze the transfer of electrons between dihydroorotate and specific oxidant substrates. Class 1B DHODs (DHODBs) use NAD as the oxidant substrate and have a heterodimeric structure that incorporates two active sites, each with a flavin cofactor. One FeS center lies roughly equidistant between the flavin isoalloxazine rings.

View Article and Find Full Text PDF

The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease for which no effective treatment currently exists. In this study, we identified formononetin (FMN), a neuroprotective component found in herbal medicines such as and , as a potential agent targeting multiple pathways involved in PD. To investigate the anti-PD effects of FMN, we employed () PD models, specifically the transgenic strain NL5901 and the MPP(+)-induced strain BZ555, to investigate the effects of FMN on the key pathological features of PD, including dyskinesia, dopamine neuron damage, and reactive oxygen species (ROS) accumulation.

View Article and Find Full Text PDF

Magnolol Inhibits High Fructose-Induced Podocyte Inflammation via Downregulation of TKFC/Sp1/HDAC4/Notch1 Activation.

Pharmaceuticals (Basel)

October 2024

State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China.

Article Synopsis
  • - Magnolol, a compound with anti-inflammatory properties, was studied for its ability to protect podocytes (key cells in the kidneys) from inflammation caused by high fructose consumption.
  • - In experiments with rats and human podocyte cell lines, magnolol improved kidney function and reduced the inflammatory markers TNF-α and NICD1, indicating its protective effects against fructose-induced damage.
  • - The study also examined how magnolol interacts with proteins involved in inflammation, showing that it affects the protein levels of TKFC, Sp1, and HDAC4, which play roles in the inflammatory response in podocytes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!