A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). | LitMetric

Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC).

Neurotoxicol Teratol

Department of Anatomy and Cell Biology, P.O. Box 70582, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA.

Published: February 2008

This study examines the effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine (PROZAC), on the ontogeny of spontaneous swimming activity (SSA) in developing zebrafish. The development of zebrafish motor behavior consists of four sequential locomotor patterns that develop over 1-5 days post fertilization (dpf), with the final pattern, SSA, established at 4-5 dpf. In stage specific experiments, larvae were exposed to 4.6 microM fluoxetine for 24 h periods beginning at 24 h post fertilization (hpf) and extending through 5 dpf. From 1-3 dpf, there was no effect on SSA or earlier stages of motor development, i.e., spontaneous coiling, evoked coiling and burst swimming. Fluoxetine exposure at 3 dpf for 24 h resulted in a transient decrease in SSA through 7 dpf with a complete recovery by 8 dpf. Larvae exposed to 4.6 microM fluoxetine for 24 h on 4 or 5 dpf showed a significant decrease in SSA by day 6 with no recovery through 14 dpf. Although SSA was significantly affected 24 h after fluoxetine exposure, there was little or no effect on pectoral fin movement. These results demonstrate both a stage specific and a long term effect of 4.6 microM fluoxetine exposure in 4 and 5 dpf larvae. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the relative levels of a serotonin transporter protein (SERT) transcript and the serotonin 1A (5-HT(1A)) receptor transcript in developing embryos/larvae over 1-6 dpf. Both transcripts were present at 24 hpf with the relative concentration of SERT transcript showing no change over the developmental time range. The relative concentration of the 5-HT(1A) receptor transcript, however, showed a two-tiered pattern of concentration. RT-PCR was also used to detect potential changes in the SERT and 5-HT(1A) receptor transcripts in 6 dpf larvae after a 24 h exposure to 4.6 microM fluoxetine on 5 dpf. Three separate regions of the CNS were individually analyzed, two defined brain regions and spinal cord. The two brain regions showed no effect on transcript levels subsequent to fluoxetine exposure, however, the spinal cord showed a significant decrease in both transcripts. These results suggest a correlation between decreased concentration of SERT and 5-HT(1A) receptor transcripts in spinal cord and decreased SSA subsequent to fluoxetine exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ntt.2007.07.005DOI Listing

Publication Analysis

Top Keywords

fluoxetine exposure
20
microm fluoxetine
16
5-ht1a receptor
16
dpf
13
dpf larvae
12
spinal cord
12
fluoxetine
10
fluoxetine prozac
8
post fertilization
8
stage specific
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!