Steady surface modification of polydimethylsiloxane microchannel and its application in simultaneous analysis of homocysteine and glutathione in human serum.

J Chromatogr A

Department of Applied Chemistry, Graduate School of Engineering, Tokyo Metropolitan University, 1-1, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.

Published: September 2007

A novel polydimethylsiloxane (PDMS) surface modification method for microchip electrophoresis has been developed to make a stable and sufficient electroosmotic flow (EOF). Poly(l-glutamic acid) (PGA) which had ionizable carboxyl groups at a high pH-range was immobilized on the surface of microchannel fabricated with PDMS. The surface modification involved surface oxidation by plasma, the silanization of 3-aminopropyldimethylethoxysilane (APDMES) and immobilization of PGA via amide bond. The modified channel was extremely stable against consecutive electric power supply over 5h, and its long-term stability was demonstrated by the efficient separation of four amino acid derivatives reproducibly after a week. Additionally, homocysteine (Hcy), important risk factor of cardiovascular disease, osteoporosis and problems in pregnancy, was successfully measured in human serum in modified PDMS channel with the other thio amino acid simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2007.08.030DOI Listing

Publication Analysis

Top Keywords

surface modification
12
human serum
8
pdms surface
8
amino acid
8
steady surface
4
modification polydimethylsiloxane
4
polydimethylsiloxane microchannel
4
microchannel application
4
application simultaneous
4
simultaneous analysis
4

Similar Publications

A review of electrospun metal oxide semiconductor-based photocatalysts.

iScience

January 2025

Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China.

In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity.

View Article and Find Full Text PDF

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy.

Mater Today Bio

February 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.

View Article and Find Full Text PDF

Liposomal nanocarriers are able to carry peptides for efficient and selective delivery of radioactive tracer and drugs into the tumors. Angiopoietin 2 (ANGPT2) is an excellent biomarker for precise diagnosis and therapy of glioma. The present study aimed to design ANGPT2-specific peptides to modify the surface of nanoliposomes containing doxorubicin (Dox) for integrative imaging and targeting therapy of glioma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!