Allogeneic and autoimmune islet destruction limits the success of islet transplantation in autoimmune diabetic patients. This study was designed to investigate whether ex vivo gene transfer of viral interleukin-10 (vIL-10) protects BioBreeding (BB) rat islets from autoimmune destruction after transplantation into diabetic BB recipients. Islets were transduced with adenoviral constructs (Ad) expressing the enhanced green fluorescent protein (eGFP), alpha-1 antitrypsin (AAT) or vIL-10. Transduction efficiency was demonstrated by eGFP-positive cells and vIL-10 production. Islet function was determined in vitro by measuring insulin content and insulin secretion and in vivo by grafting AdvIL-10-transduced islets into syngeneic streptozotocin (SZ)-diabetic, congenic Lewis (LEW.1 W) rats. Finally, gene-modified BB rat islets were grafted into autoimmune diabetic BB rats. Ad-transduction efficiency of islets increased with virus titre and did not interfere with insulin content and insulin secretion. Ad-transduction did not induce Fas on islet cells. AdvIL-10-transduced LEW.1 W rat islets survived permanently in SZ-diabetic LEW.1 W rats. In diabetic BB rats AdvIL-10-transduced BB rat islets were rapidly destroyed. Prolongation of islet culture prior to transplantation improved the survival of gene-modified islets in BB rats. Several genes including those coding for chemokines and other peptides associated with inflammation were down-regulated in islets after prolonged culture, possibly contributing to improved islet graft function in vivo. Islets transduced ex vivo with vIL-10 are principally able to cure SZ-diabetic rats. Autoimmune islet destruction in diabetic BB rats is not prevented by ex vivo vIL-10 gene transfer to grafted islets. Graft survival in autoimmune diabetic rats may be enhanced by improvements in culture conditions prior to transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823263PMC
http://dx.doi.org/10.1111/j.1582-4934.2007.00059.xDOI Listing

Publication Analysis

Top Keywords

rat islets
20
diabetic rats
20
gene transfer
12
islets
12
autoimmune diabetic
12
rats
9
vivo gene
8
transfer viral
8
viral interleukin-10
8
transplantation diabetic
8

Similar Publications

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

A novel bombesin-related peptide modulates glucose tolerance and insulin secretion in non-obese and hypothalamic-obese rats.

Toxicon

January 2025

Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Biociências e Saúde (PPG-BCS) - Cascavel, Brazil. Electronic address:

This study investigated the effects of a novel bombesin-related peptide (BR-b), derived from the skin of the Chaco tree frog (Boana raniceps), on glucose homeostasis in non-obese and hypothalamic-obese male rats. Hypothalamic obesity was induced in neonatal rats through high-dose administration of monosodium glutamate (MSG; 4 g/kg), while control animals (CTL) received an equimolar saline solution. At 70 days of age, both MSG and CTL groups underwent an oral glucose tolerance test (OGTT; 2 g/kg) with or without prior intraperitoneal administration of BR-b at doses of 0.

View Article and Find Full Text PDF

Maternal Low-Protein Diet During Nursing Leads to Glucose-Insulin Dyshomeostasis and Pancreatic-Islet Dysfunction by Disrupting Glucocorticoid Responsiveness in Male Rats.

Biology (Basel)

December 2024

Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil.

Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose-insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.

View Article and Find Full Text PDF

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Objective: The current study was conducted to investigate the effect of intermittent fasting (IF) with a low-carbohydrate-high-protein (LCHP) diet on blood glucose control in streptozotocin (STZ)-nicotinamide-induced type 2 diabetic rats (DR).

Methods: Thirty male Wistar rats were divided into six groups ( = 5) including a group of normal rats (NR) that received a control diet (CD) (50% carbohydrates, 17% protein, and 33% fat) with (AL) feeding. The remaining 5 groups were DR injected with STZ and fed on CD or LCHP diet (40% carbohydrates, 30% protein, and 30% fat) for 6 weeks, either AL or IF (with a time-restricted feeding of 16 h followed by 8 h feeding period).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!