The concentrations of beryllium-7, sodium-22, aluminum-26, potassium-40, scandium-46, vanadium-48, chromium-51, manganese-54, cobalt-57, cobalt-60, and thorium-232 (thallium-208) have been measured in the Allende meteorite by nondestructive gamma-ray spectrometry. The high cobalt-60 content of the meteorite is indicative of a preatmospheric body with a minimum effective radius of 50 centimeters and a weight of 1650 kilograms; the aluminum-26 activity indicates a minimum exposure age of 3 million years.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.166.3910.1269DOI Listing

Publication Analysis

Top Keywords

allende meteorite
8
meteorite nondestructive
8
nondestructive gamma-ray
8
radionuclide composition
4
composition allende
4
gamma-ray spectrometric
4
spectrometric analysis
4
analysis concentrations
4
concentrations beryllium-7
4
beryllium-7 sodium-22
4

Similar Publications

This study presents a new procedure for high-precision Sm isotope analysis by thermal ionisation mass spectrometry (TIMS) for geological samples. A four-step chemical separation scheme results in sharp separation of Sm and Nd from the same sample aliquot. The first step utilises anion exchange resin to remove Fe from the sample solution.

View Article and Find Full Text PDF
Article Synopsis
  • * The research simulated the aqueous alteration processes of residues from irradiated interstellar ice, using minerals like serpentinite and the Allende meteorite to study amino acid changes.
  • * Results showed that minerals and their types crucially affect the creation and breakdown of amino acids during these simulated experiments.
View Article and Find Full Text PDF

From Meteorite to Life's Building Blocks: A possible Electrochemical Pathway to Amino Acids and Peptide Bonds.

Chemistry

October 2024

Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU) Linz, Altenberger Straße, Linz, 694040, Austria.

This study explores the electrochemical properties of the carbonaceous Allende CV3 meteorite, focusing on its potential as a Fe-based catalyst derived from Mackinawite iron sulfide for electrocatalytic reactions facilitating nitrogen (N) fixation into ammonia. Through comprehensive analysis, we not only monitored the evolution of key compounds such as CN, sulfur/HS, H and carbonyl compounds, but also identified potential reagent carriers, indicating significant implications for the Strecker synthesis of amino acids in space environments. Initial examination revealed the presence of polypeptides, notably sequences including dimer Ala-α-HO-Gly, pentamer Gly-Ala, and hexamer Gly-(HO-Gly).

View Article and Find Full Text PDF
Article Synopsis
  • The mystery of sulfur's origin in Earth's first organisms has puzzled scientists for over a century, particularly due to the scarcity of sulfates during the Archean period.
  • Laboratory simulations show that simple alkylsulfonic acids, which are water-soluble S(+IV) compounds, can form in space when sulfur-doped ices interact with cosmic rays.
  • This finding provides insights into how essential sulfur-containing organic molecules may have been produced in extraterrestrial environments and later delivered to Earth via comets and asteroids, possibly found in meteorites like Murchison and Ryugu.
View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium and in meteorites such as Murchison and Allende and signify the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles (soot particles, interstellar grains). However, the predicted lifetime of interstellar PAHs of some 10 years imply that PAHs should not exist in extraterrestrial environments suggesting that key mechanisms of their formation are elusive. Exploiting a microchemical reactor and coupling these data with computational fluid dynamics (CFD) simulations and kinetic modeling, we reveal through an isomer selective product detection that the reaction of the resonantly stabilized benzyl and the propargyl radicals synthesizes the simplest representative of PAHs - the 10π Hückel aromatic naphthalene (CH) molecule - the novel Propargyl Addition-BenzAnnulation (PABA) mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!