Phosphorescence spectra of solutions frozen and at low temperatures (77 degrees K) possess more characteristic structure and detail than fluorescence spectra. They contain no background due to scattering of the exciting radiation. Thus greater analytical specificity and sensitivity are obtained. Some indole derivatives indistinguishable by spectrofluorimetry are easily differentiated by spectrophosphorimetry.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.128.3335.1341DOI Listing

Publication Analysis

Top Keywords

phosphorescence spectra
8
indole derivatives
8
spectra analyses
4
analyses indole
4
derivatives phosphorescence
4
spectra solutions
4
solutions frozen
4
frozen low
4
low temperatures
4
temperatures degrees
4

Similar Publications

High Efficiency and Narrow Emissions in Deep-Blue Pt(II) Emitters in Organic Light-Emitting Diodes via Anchor-Shaped Substituent Design.

ACS Appl Mater Interfaces

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

In this study, a tetradentate Pt(II) complex designed to have -heterocyclic carbene ligands modified with an anchor-shaped 2,6-diisopropylphenyl (dip) group is described to enhance molecular rigidity for narrow emission and high efficiency. The tetradentate ligand with the dip group significantly hinders steric interactions and restricts π-conjugation from benzocarbene, leading to shallow lowest unoccupied molecular orbital levels and a consequent reduction in the triplet metal-to-ligand charge transfer character. These structural modifications result in narrow emission spectra and enhanced efficiency for blue organic light-emitting diodes (OLEDs) over wide doping concentration ranges.

View Article and Find Full Text PDF

We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).

View Article and Find Full Text PDF

New Concept on the Generation and Regulation of Circularly Polarized Luminescence.

Chemistry

December 2024

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

Circularly polarized luminescence (CPL) has attracted tremendous attention because of its significant application prospect across multiple fields of three-dimensional display, data storage, and information encryption. Chirality and luminescence are two necessary prerequisites for the generation of CPL. However, controlling these two factors simultaneously in a rational manner remains a challenge.

View Article and Find Full Text PDF

In this study, we present the growth of large (SiS)I ( = La, Ce) crystals, both undoped and doped with Ce and Eu. The synthesis process involves the utilization of an arc-melted precursor in conjunction with sulfur and KI. We investigate the role of Zr, Nb, Mo, and Ir as cocrystallization agents, facilitating the growth of relatively large (up to 6-7 mm) crystals.

View Article and Find Full Text PDF

We studied absorption and fluorescence as well as room temperature phosphorescence (RTP) of 4-methylumbelliferone (4MU) in poly (vinyl alcohol) (PVA) films. We focused our study on the long-wavelength basic form of 4MU with absorption centered at 375 nm. The strong fluorescence with a quantum yield of above 70% appears at ∼430 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!