Evidence for genetic heterogeneity in malignant hyperthermia susceptibility.

Genomics

Department of Anesthesiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

Published: November 1991

Malignant hyperthermia susceptibility (MHS) is a clinically heterogeneous pharmacogenetic disorder characterized by accelerated metabolism, hyperthermia, and frequently muscle rigidity. MHS is elicited by all commonly used potent inhalation anesthetics and depolarizing neuromuscular blockers and remains an important cause of death due to anesthesia. Recent linkage studies suggest a single genetic locus for this disorder on chromosome 19q13.1. The results of our linkage analyses exclude several loci on 19q13.1 as a site for the gene(s) that produces the MHS phenotype in three unrelated families and clearly establish genetic heterogeneity in this disorder. These results are consistent with the hypothesis that the genetic defect that alters thermoregulation may vary in MHS and that clinical variability in the expression of MHS may be explained by genetic heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0888-7543(91)90061-iDOI Listing

Publication Analysis

Top Keywords

genetic heterogeneity
12
malignant hyperthermia
8
hyperthermia susceptibility
8
mhs
5
evidence genetic
4
heterogeneity malignant
4
susceptibility malignant
4
susceptibility mhs
4
mhs clinically
4
clinically heterogeneous
4

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development.

Autism Res

January 2025

Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China.

Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive.

View Article and Find Full Text PDF

[Growth and development patterns of Noonan syndrome and advances in the treatment of short stature].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.

Patients with Noonan syndrome (NS) are born with normal or slightly lower body length and weight compared to the normal ranges. However, their height gradually falls behind that of the general population, leading to growth retardation and delayed puberty. In China, the incidence of short stature in patients with NS is approximately 65%.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!