Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.257.5071.727 | DOI Listing |
Nat Commun
January 2025
National Institute of Water and Atmospheric Research (NIWA), 301 Evans Bay Parade, Wellington, 6021, New Zealand.
Hydroxyl (OH) is the atmosphere's main oxidant removing most pollutants including methane. Its short lifetime prevents large-scale direct observational quantification. Abundances inferred using anthropogenic trace gas measurements and models yield conflicting trend estimates.
View Article and Find Full Text PDFNat Commun
December 2024
Earth Commons, Georgetown University, Washington, DC, USA.
Observationally-derived emissions of ozone depleting substances must be scrutinized to maintain the progress made by the Montreal Protocol in protecting the stratospheric ozone layer. Recent observations of three chlorofluorocarbons (CFCs), CFC-113, CFC-114, and CFC-115, suggest that emissions of these compounds have not decreased as expected given global reporting of their production. These emissions have been associated with hydrofluorocarbon (HFC) production, which can require CFCs as feedstocks or generate CFCs as by-products, yet emissions from these pathways have not been rigorously quantified.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Department of Chemistry, University of Colorado Boulder Boulder, Colorado 80309, United States.
Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.
Photodissociation of the CH2Cl radical is investigated by using high-level multireference configuration interaction ab initio methods, including the spin-orbit coupling. All possible fragmentation pathways, namely, CH2Cl + hν → CH2 + Cl, HCCl + H, and CCl + H2, have been analyzed. The potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated.
View Article and Find Full Text PDFOphthalmologie
January 2025
Department of Ophthalmology, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland.
The incidence of cataract is expected to increase, primarily due to an aging population. However, human-induced environmental changes may also contribute. In this narrative review, we explore the connection between climate change, the depletion of the ozone layer, and modifiable risk factors for cataract development such as UV light exposure and pollution-related factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!