Hair melanin content and photodamage.

J Cosmet Sci

Chemistry Institute, State University of Campinas-UNICAMP, CP 6154, 13084-971 Campinas, SP, Brazil.

Published: October 2007

The aim of this study was to compare the susceptibility of hair with different melanin content (virgin white, blond and dark-brown) to photodegradation, evaluating changes on hair color and mechanical properties. Light exposure was carried out with a mercury-vapor lamp for up to 1800h. It was observed that color changes are different for each hair type and dependent on the wavelength range. Breaking elongation and breaking strength were affected in all hair types, mainly by UVB radiation. Results show that the melanin type and content of each hair is not the only parameter related to hair damages caused by sun exposure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hair melanin
8
melanin content
8
changes hair
8
hair
7
content photodamage
4
photodamage aim
4
aim study
4
study compare
4
compare susceptibility
4
susceptibility hair
4

Similar Publications

Background: There is no definitive solution for the treatment of striae distensae (SD), and effectiveness of each treatment method remains controversial. We aimed to investigate and compare the efficacy of the combination of Erbium YAG (Er:YAG) laser and stromal vascular fraction (SVF), the combination of Er:YAG laser and platelet-rich plasma (PRP) and Er:YAG laser plus saline in the treatment of SD.

Materials And Methods: In 12 participating patients with at least three lesions (36 lesions in total), each lesion was treated with an Er:YAG laser.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells.

View Article and Find Full Text PDF

This study investigated the multifaceted benefits of water extract across various cell lines, including murine B16F1 melanoma cells, human keratinocyte HaCaT cells, and human follicle dermal papilla cells (HFDPCs), to assess its potential in skin health improvement. Initially, the antioxidant capacity of the extract was evaluated using the ABTS assay, revealing significant radical scavenging activity, indicating strong antioxidative properties. Subsequently, extract showed notable inhibition of α-MSH-enhanced melanin production in B16F1 cells without cell toxicity by suppressing tyrosinase expression.

View Article and Find Full Text PDF

Melanogenesis, the biological process responsible for melanin synthesis, plays a crucial role in determining skin and hair color, photoprotection, and serving as a biomarker in various diseases. While various factors regulate melanogenesis, the role of fatty acids in this process remains underexplored. This study investigated the anti-melanogenic properties of 10(E)-pentadecenoic acid (10E-PDA) through both in silico and in vitro analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!