Use of a passive equilibration methodology to encapsulate cisplatin into preformed thermosensitive liposomes.

Int J Pharm

Department of Advanced Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3.

Published: February 2008

A conventional, cholesterol-containing liposome formulation of cisplatin has demonstrated insignificant activity in clinical trials, due in part, to insufficient release of encapsulated content following localization within solid tumors. For this reason, the development of a triggered release liposome formulation is desirable. In this report, cisplatin was encapsulated into lysolipid-containing thermosensitive liposomes (LTSL) using a novel technique, which relies on the equilibration of cisplatin across the liposomal membrane at temperatures above the gel-to-liquid crystalline phase transition temperature (TC) of the bulk phospholipid. Mild heating and drug loading into LTSL did not induce morphological changes of the liposomes. In vitro data demonstrated that >95% of encapsulated cisplatin was released from LTSL within 5 min following mild heating at 42 degrees C, while <5% was released at 37 degrees C. Under similar conditions, lysolipid-free thermosensitive liposomes exhibited 70% release of cisplatin at 42 degrees C, and cholesterol-containing liposomes exhibited negligible drug release at 42 degrees C. The pharmacokinetic profiles of LTSL- and TSL-cisplatin indicated that these formulations were rapidly eliminated from circulation (terminal t(1/2) of 1.09 and 2.83 h, respectively). The therapeutic utility of LTSL-cisplatin formulation will be based on strategies where hyperthermia is applied prior to the administration of the liposomal drug-a strategy similar to that used in the clinical assessment of LTSL-doxorubicin formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2007.07.020DOI Listing

Publication Analysis

Top Keywords

thermosensitive liposomes
8
liposome formulation
8
mild heating
8
cisplatin
5
passive equilibration
4
equilibration methodology
4
methodology encapsulate
4
encapsulate cisplatin
4
cisplatin preformed
4
preformed thermosensitive
4

Similar Publications

Current analgesics on the market exhibit a short duration of action and induce the production of inflammatory factors in tissues damaged by surgical procedures. Inflammatory factor production can create acidic environments, limiting drug delivery. In this study, we developed a novel injectable formulation comprising bupivacaine multivesicular liposomes of high osmotic pressure (H-MVL) and meloxicam nanocrystals (MLX) in a thermosensitive gel (H-MVL/MLX@GEL) adapted to the microenvironment for long-term postoperative analgesia.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) used for magnetic hyperthermia can not only damage tumor cells after elevating to a specific temperature but also provide the temperature required for thermosensitive liposomes (TSL) to release doxorubicin (DOX). MNPs injected into tumor will generate heat under an alternating magnetic field, so the MNPs distribution can determine temperature distribution and further affect the DOX concentration used for tumor therapy. This study proposes an asynchronous injection strategy for this combination therapy in order to improve the DOX concentration value for drug therapy, in which the MNPs are injected into tumor after a certain lagging of TSL injection in order to increase the TSL concentration inside tumor.

View Article and Find Full Text PDF

Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy.

J Mater Chem B

January 2025

College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.

Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release.

View Article and Find Full Text PDF

Novel thermosensitive small multilamellar lipid nanoparticles with promising release characteristics made by dual centrifugation.

Eur J Pharm Sci

December 2024

Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH, 78532 Tuttlingen, Germany. Electronic address:

Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.

View Article and Find Full Text PDF

Thermosensitive, injectable, antibacterial glabridin liposome/chitosan dual network hydrogel for diabetic wound healing.

Int J Biol Macromol

December 2024

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Department of Traditional Chinese Medicine, Institute of Guangdong Geriatric, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Thermosensitive hydrogels show great potential in healing diabetic wounds, but they are still challenged by the long healing time, risk of infectivity, and accumulation of melanin. Herein, a dual network hydrogel is designed, which consists of chlorogenic acid (CA) modified chitosan (CS) (CA@CS), poly(N-isopropylacrylamide) (PNIPAm), and glabridin liposomes (GL). The gelation transition temperature of the hydrogel is 32-34 °C, which thus endows it with superior injectability at ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!