Branched 1,6-1,3-beta-glucans from Phytophthora sojae cell walls represent pathogen-associated molecular patterns (PAMPs) that have been shown to mediate the activation of plant defence reactions in many legumes. In soybean, a receptor protein complex containing a high affinity beta-glucan-binding protein (GBP) was identified and investigated in detail. In the model legume Medicago truncatula, used for functional genomic studies of various plant-microbe interactions, a high-affinity beta-glucan-binding site was characterized biochemically. However, to date, none of the genes encoding GBPs from M. truncatula have been described. Here, we report the identification of four full-length clones encoding putative beta-glucan-binding proteins from M. truncatula, MtGBP1, 2, 3, and 4, composing a multigene family encoding GBP-related proteins in this plant. Differences in expression patterns as well as in regulation on treatment with two different biotic elicitors are demonstrated for the members of the GBP family and for a selection of defence-related genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2007.02.008DOI Listing

Publication Analysis

Top Keywords

multigene family
8
family encoding
8
encoding putative
8
putative beta-glucan-binding
8
beta-glucan-binding proteins
8
medicago truncatula
8
identification multigene
4
encoding
4
beta-glucan-binding
4
proteins medicago
4

Similar Publications

Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae.

Appl Microbiol Biotechnol

January 2025

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).

View Article and Find Full Text PDF

Background: F plasmids are abundant in E. coli, carrying a variety of genetic cargo involved in fitness, pathogenicity, and antimicrobial resistance. ColV and pUTI89-like plasmids have drawn attention for their potential roles in various forms of extra-intestinal pathogenicity.

View Article and Find Full Text PDF

Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.

View Article and Find Full Text PDF

Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.

Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.

View Article and Find Full Text PDF

CTNNA1 codes α-1 catenin, a molecule that functions in intercellular adhesion in combination with E-cadherin (coded by CDH1). A germline pathogenic variant (GPV) of CTNNA1 increases the risk of hereditary diffuse gastric cancer (HDGC); however, this GPV has not been reported in Japan. A 35-year-old Japanese man with an advanced gastric cancer underwent comprehensive genome profiling (CGP), which led to the detection of a CTNNA1 GPV (p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!