Purpose: Liposomes co-encapsulating doxorubicin (DOX) and verapamil (VER), and conjugated to transferrin (Tf-L-DOX/VER) were synthesized and evaluated in K562 leukemia cells. The design of this formulation was aimed at selective targeting of tumor cells, reducing cardiotoxicity of DOX and VER, as well as overcoming P-glycoprotein (Pgp)-mediated multidrug resistance (MDR) phenotype.

Methods: The liposomes were prepared by polycarbonate membrane extrusion, followed by pH-gradient driven remote loading and Tf conjugation. Kinetics of in vitro release of DOX and VER from liposomes was determined by measuring changes in the concentration of encapsulated drugs. Uptake of Tf-conjugated liposomes by K562 cells was evaluated by fluorescence microscopy and by fluorometry. Cytotoxicities of various formulations of DOX were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolum bromide (MTT) assay.

Results: Efficiencies for liposomal loading of DOX and VER were 95% and 70%, respectively. The mean particle diameter for the liposomes was approximately 110nm. Rates of release for DOX and VER were similar in singly-loaded and co-loaded liposomes. Tf-L-DOX/VER showed efficient uptake by the TfR+ K562 cells. In DOX-resistant K562 cells (K562/DOX), Tf-L-DOX/VER showed 5.2 and 2.8 times greater cytotoxicity (IC50 = 4.18 muM) than non-targeted liposomes (L-DOX/VER) (IC50 = 21.7 muM) and Tf-targeted liposomes loaded with DOX alone (Tf-L-DOX) (IC50 = 11.5 muM), respectively.

Conclusions: The combination of TfR targeting and co-encapsulation of DOX and VER was highly effective in overcoming drug resistance in K562 leukemia cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dox ver
20
k562 cells
12
liposomes
9
multidrug resistance
8
liposomes co-encapsulating
8
co-encapsulating doxorubicin
8
dox
8
k562 leukemia
8
leukemia cells
8
release dox
8

Similar Publications

Background: Multidrug resistance (MDR), mainly caused by ATP-binding cassette transporters (ABCTs) efflux, makes it difficult for many anticancer drugs to treat breast cancer (BC). Phytochemicals can reverse cancer's MDR by modifying ABC transporter expression and function, as well as working synergistically with anticancer drugs to target other molecules. The reversal effect of the isoquinoline alkaloid coptisine (COP) was assessed on four breast cell lines; Two sensitive MCF-7 cell lines with positive estrogen, androgen, progesterone, and glucocorticoid receptors, as well as MDB-MB-231 cells with negative estrogen, progesterone, and HER2 receptors, and two doxorubicin-resistant cell lines, MCF-7/ADR and MDB-MB-231/ADR.

View Article and Find Full Text PDF

Investigating the combinatory effect of with doxorubicin against selected colorectal cancer cell lines.

Drug Target Insights

December 2024

Department of Pharmacology, University of the Free State, Faculty of Health Sciences, School of Medicine, Bloemfontein - South Africa.

Introduction: Colorectal cancer incidences continue to increase annually, worldwide. Herbal plants with antiproliferative properties received research interest as agents that can be adjuvant therapies with chemotherapy drugs to enhance their efficacy and reverse drug resistance.

Methods: ethanolic (SBE) and aqueous (SBW) extracts combined with doxorubicin (DOX) against drug-sensitive and drug-resistant colorectal cancer cells were investigated for their potential adjuvant and drug resistance reversal.

View Article and Find Full Text PDF

Doxorubicin (Dox) is a high-efficiency agent for cancer therapy. However, it causes cardiotoxicity which limits its clinical application. Despite more efforts has been made to seek protective decisions, unfortunately, the poor prognosis suggests the need for new treatments.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is the most common problem of inadequate therapeutic response in tumor cells. Many trials has been developed to overcome drug efflux by P-glycoprotein (P-gp). For instance, co-administration of a number of drugs called chemosensitizers or MDR modulators with a chemotherapeutic agent to inhibit drug efflux.

View Article and Find Full Text PDF

Our recent studies demonstrated that the natural product nobiletin (NOB) served as a promising multidrug resistance (MDR) reversal agent and improved the effectiveness of cancer chemotherapy . However, low aqueous solubility and difficulty in total synthesis limited its application as a therapeutic agent. To tackle these challenges, NOB was synthesized in a high yield by a concise route of six steps and fourteen derivatives were synthesized with remarkable solubility and efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!