Inhibition of nuclear factor (NF)-kappaB has emerged as an important strategy for design of anti-inflammatory therapies. In neurodegenerative disorders like Alzheimer's disease, inflammatory reactions mediated by glial cells are believed to promote disease progression. Here, we report that uptake of a double-stranded oligonucleotide NF-kappaB decoy in rat primary glial cells is clearly facilitated by noncovalent binding to a cell-penetrating peptide, transportan 10, via a complementary peptide nucleic acid (PNA) sequence. Fluorescently labeled oligonucleotide decoy was detected in the cells within 1 h only when cells were incubated with the decoy in the presence of cell-penetrating peptide. Cellular delivery of the decoy also inhibited effects induced by a neurotoxic fragment of the Alzheimer beta-amyloid peptide in the presence of the inflammatory cytokine interleukin (IL)-1beta. Pretreatment of the cells with the complex formed by the decoy and the cell-penetrating peptide-PNA resulted in 80% and 50% inhibition of the NF-kappaB binding activity and IL-6 mRNA expression, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/jmn:31:03:209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!