Prostaglandins are anticancer agents known to inhibit tumor cell proliferation both in vitro and in vivo by affecting the mRNA stability. Here we report that a MAR-binding protein SMAR1 is a target of Prostaglandin A2 (PGA2) induced growth arrest. We identify a regulatory mechanism leading to stabilization of SMAR1 transcript. Our results show that a minor stem and loop structure present in the 5' UTR of SMAR1 (1-UTR) is critical for nucleoprotein complex formation that leads to SMAR1 stabilization in response to PGA2. This results in an increased SMAR1 transcript and altered protein levels, that in turn causes downregulation of Cyclin D1 gene, essential for G1/S phase transition. We also provide evidence for the presence of a variant 5' UTR SMAR1 (17-UTR) in breast cancer-derived cell lines. This form lacks the minor stem and loop structure required for mRNA stabilization in response to PGA2. As a consequence of this, there is a low level of endogenous tumor suppressor protein SMAR1 in breast cancer-derived cell lines. Our studies provide a mechanistic insight into the regulation of tumor suppressor protein SMAR1 by a cancer therapeutic PGA2, that leads to repression of Cyclin D1 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094063PMC
http://dx.doi.org/10.1093/nar/gkm649DOI Listing

Publication Analysis

Top Keywords

stem loop
12
loop structure
12
protein smar1
12
stabilization smar1
8
structure utr
8
smar1
8
smar1 transcript
8
minor stem
8
utr smar1
8
stabilization response
8

Similar Publications

Auxin Triggers AHR Pathway Activation in the Auxin-Inducible Degron System in Mammalian Cells.

Biochemistry (Mosc)

December 2024

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.

The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells.

View Article and Find Full Text PDF

Patterns of Isoform Variation for N Gene Subgenomic mRNAs in Betacoronavirus Transcriptomes.

Viruses

December 2024

Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.

The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.

View Article and Find Full Text PDF

The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.

View Article and Find Full Text PDF

The mechanisms underlying post-acute sequelae of SARS-CoV-2 infection (PASC) are a topic of debate. This study examined the presence of SARS-CoV-2 microRNA (miRNA)-like small RNAs in extracellular fluids and their potential link to PASC by using a quantitative stem-loop RT-PCR MiRNA assay. Initially, it was demonstrated that three previously identified SARS-CoV-2 miRNA-like small RNAs, specifically svRNA 1 and 2 and miR-07a, were significantly expressed in infected cells in vitro and released into the supernatant following infection by different SARS-CoV-2 variants.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!