Diketoacid (DKA) compounds have been shown to inhibit HIV-1 integrase by a mechanism that involves sequestration of the active site metals. Because HIV-1 integrase and Tn5 transposase have similar active site architectures and catalytic mechanisms, we investigated whether DKA analogues would inhibit Tn5 transposase activity and provide a model system to explore the mechanisms of action of these inhibitors. A screen of several hundred DKA analogues identified several with activity against Tn5 Tnp. Six DKA inhibitors used in this study manifested a variety of effects on different transposition steps suggesting that different analogues may have different binding contacts with transposase. All DKA compounds inhibited paired end complex (PEC) formation in which the nucleoprotein complex required for catalysis is assembled. Dissociation of PECs by some DKA compounds indicates that these inhibitors can decrease PEC stability. Four DKA compounds inhibited the two cleavage steps releasing transposon DNA from flanking DNA, and one of these four compounds preferentially inhibited the second cleavage step. The differential effect of this inhibitor on the second cleavage event indicates that cleavage of the two transposon-donor DNA boundaries is a sequential process requiring a conformational change. The requirement for a conformational change between cleavage events was also demonstrated by the inability of transposase to perform second cleavage at 25 degrees C. Finally, all six compounds inhibit strand transfer, the final step of Tn5 transposition. Two of the compounds that inhibited strand transfer have no effect on DNA cleavage. The strand transfer inhibition properties of various DKA compounds was sensitive to the structure of the 5'-non-transferred strand, suggesting that these compounds bind in or near the transposase active site. Other results that probe compound binding sites include the effects of active site mutations and donor DNA on DKA compound inhibition activities. Thus, DKA inhibitors will provide an important set of tools to investigate the mechanism of action of transposases and integrases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi7006542 | DOI Listing |
RSC Adv
October 2024
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
Wellcome Open Res
March 2024
Department of Endocrinology, Our Lady of Lourdes Hospital, Drogheda, County Louth, A92 VW28, Ireland.
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are filtered and secreted to their primary site of action in the proximal tubule of the kidney. At this site, SGLT2 inhibitors also reduce renal elimination of ketone bodies, a finding implicated in their propensity to cause ketoacidosis. Many commonly used medications have potential to diminish renal elimination of SGLT2 inhibitors and to compound the effects of SGLT2 inhibitors on renal elimination of ketone bodies by inhibiting tubular secretion of the SGLT2 inhibitor itself and/or ketone bodies.
View Article and Find Full Text PDFAdv Mater
August 2024
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
Diabetic ketoacidosis (DKA), a severe complication of type 1 diabetes (T1D), is triggered by production of large quantities of ketone bodies, requiring patients with T1D to constantly monitor their ketone levels. Here, a skin-compatible hydrogel microneedle (HMN)-continuous ketone monitoring (HMN-CKM) device is reported. The sensing mechanism relies on the catechol-quinone chemistry inherent to the dopamine (DA) molecules that are covalently linked to the polymer structure of the HMN patch.
View Article and Find Full Text PDFCurr Probl Cardiol
September 2024
Lahey Hospital and Medical Center, MA, USA. Electronic address:
Purpose: Despite effectiveness of sodium-glucose cotransporter 2 (SGLT 2) inhibitors, concerns have been raised about the potential side effects of these drugs. Thus, a pharmaco-vigilance study was designed that aims to identify any discrepancies between the reported adverse events & assess the safety profile of SGLT2 inhibitors.
Methods: We studied diabetic ketoacidosis (DKA), euglycemic DKA, amputation, urinary tract infection (UTI), mycotic genital infection & hypotension associated with empagliflozin, dapagliflozin, canagliflozin & ertugliflozin in RCTs and reporting databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!