Production of structure-grade mammalian membrane proteins in substantial quantities has been hindered by a lack of methods for effectively profiling multiple constructs expression in higher eukaryotic systems such as insect or mammalian cells. To address this problem, a specialized small-scale eukaryotic expression platform by Thomson Instrument Company (Vertiga-IM) was developed and used in tandem with a Guava EasyCyte microcapillary 96-well cytometer to monitor cell density and health and evaluate membrane protein expression. Two proof of concept experiments were conducted using the human beta(2)-adrenergic receptor (beta(2)AR) and the gap junction protein connexin26 (Cx26) in a baculovirus expression system. First, cell surface expression was used to assess the expression levels of 14 beta(2)AR truncation variants expressed using the Vertiga-IM shaker. Three of these variants were then compared to wild-type beta(2)AR using three metrics: cell surface expression, saturation ligand binding and protein immunoblot analysis of dodecylmaltoside extracted material. Second, a series of systematic Cx26 truncation variants were evaluated for expression by protein immunoblot analysis. The cumulative results for these two systems show that the Vertiga-IM instrument can be used effectively in the parallel insect cell microexpression of membrane protein variants, and that the expression of cell surface molecules as monitored with the Guava EasyCyte instrument can be used to rapidly assess the production of properly folded proteins in the baculovirus expression system. This approach expedites the in vitro evaluation of a large number of mammalian membrane protein variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274776PMC
http://dx.doi.org/10.1016/j.pep.2007.06.003DOI Listing

Publication Analysis

Top Keywords

membrane protein
16
protein variants
12
cell surface
12
expression
11
mammalian membrane
8
guava easycyte
8
baculovirus expression
8
expression system
8
surface expression
8
truncation variants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!