Sediment samples were collected from two homes which were flooded in the wake of Hurricane Katrina in August 2005. The samples were analyzed for trace metals and semi-volatile organic compounds using techniques based on established EPA methods. The data showed higher concentrations of some metals and semi-volatile organic pollutants than reported in previous outdoor sampling events of soils and sediments. The Lake Pontchartrain sediments became resuspended during the hurricane, and this material subsequently was found in the residential areas of New Orleans following levee breaches. The clay and silt particles appear to be selectively deposited inside homes, and sediment contaminant concentrations are usually greatest within this fraction. Re-entry advisories based on outdoor sample concentration results may have under-predicted the exposure levels to homeowners and first responders. All contaminants found in the sediment sampled in this study have their origin in the sediments of Lake Pontchartrain and other localized sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2007.07.010 | DOI Listing |
Environ Res
March 2025
Enviromental Chemistry Laboratory, Resource Management and Environmental Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Seasonal fluctuations can influence many biotic and abiotic parameters in wetland environments. Present research on wetlands do not serve as a comprehensive model for understanding these seasonal influences, especially in Northeast India, where wetland ecosystems remain understudied. That being, our study investigated the seasonal, spatial, depth-wise variations of enzyme activity (xylanase, invertase, and cellulase), microbial community, and heavy metal concentrations [chromium (Cr), cadmium (Cd), lead (Pb), and iron (Fe)] in the sediments of Deepor Beel.
View Article and Find Full Text PDFMar Pollut Bull
March 2025
National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy.
Metal(oid) concentrations in coastal sediments are often due to the contribution of anthropogenic inputs to the local geochemistry. This study aims to assess the source (lithogenic or anthropogenic) of metal(oid)s in the surface sediments of the eastern sector of the Gulf of Trieste, which is the area most impacted by urban and industrial activities. A comparison with the environmental quality standards (EQSs) defined by the legislation showed that threshold levels were exceeded for Cr, Ni, Hg, Pb, As and Cd.
View Article and Find Full Text PDFJ Environ Radioact
March 2025
School of Geography and Oceanography Sciences, Nanjing University, Nanjing, 210093, China.
This study investigates plutonium (Pu) isotopes preserved in nebkhas--aeolian dunes formed by shrubs intercepting wind-blown sands to reconstruct environmental changes in the semi-arid Mu Us dune field, northern China. Analysis results of two nebkha profiles reveal that the Pu/Pu atom ratios consistently approximate 0.18, indicating a dominant source from global fallout, with no significant local contributions from the Lop Nor or Semipalatinsk nuclear tests or the Chernobyl accident.
View Article and Find Full Text PDFMar Pollut Bull
March 2025
Department of Marine Ecology, Faculty of Aquaculture and Marine Fisheries, Arish University, Egypt. Electronic address:
This paper adds a new perspective to Ras Mohamed Protectorate mangrove sediment quality studies in terms of bioavailability, mobility, human and eco-environmental risk of various potential toxic elements (PTEs). Fe > Mn > Pb > Cu > Cd was the order in which the PTE levels declined. Residual fraction controlled the geochemical speciation of all elements.
View Article and Find Full Text PDFEnviron Monit Assess
March 2025
Department of Geology, Yashwantrao Chawhan Arts Commerce and Science College, Lakhandur, 441803, Maharashtra, India.
Freshwater lakes in central India like Pandharabodi Lake (PBL), face escalating environmental pressures due to anthropogenic activities, threatening their ecological conditions. Despite growing concerns, systematic investigations on trace metal pollution in the PBL sediments are so far not done, hindering effective conservation strategies. The present study aims to evaluate temporal distribution, enrichment, and potential eco-environmental risks of 14 trace metals (Al, Fe, Mn, Zn, Cu, Cr, Ni, Pb, Co, U, V, Rb, Th, and Sc) in the PBL core sediments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!