Substituted tetrahydroquinolines (THQs) have been previously identified as inhibitors of mammalian protein farnesyltransferase (PFT). Previously we showed that blocking PFT in the malaria parasite led to cell death and that THQ-based inhibitors are the most potent among several structural classes of PFT inhibitors (PFTIs). We have prepared 266 THQ-based PFTIs and discovered several compounds that inhibit the malarial enzyme in the sub- to low-nanomolar range and that block the growth of the parasite (P. falciparum) in the low-nanomolar range. This body of structure-activity data can be rationalized in most cases by consideration of the X-ray structure of one of the THQs bound to mammalian PFT together with a homology structural model of the malarial enzyme. The results of this study provide the basis for selection of antimalarial PFTIs for further evaluation in preclinical drug discovery assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894570PMC
http://dx.doi.org/10.1021/jm0703340DOI Listing

Publication Analysis

Top Keywords

protein farnesyltransferase
8
malarial enzyme
8
low-nanomolar range
8
second generation
4
generation tetrahydroquinoline-based
4
tetrahydroquinoline-based protein
4
inhibitors
4
farnesyltransferase inhibitors
4
inhibitors antimalarials
4
antimalarials substituted
4

Similar Publications

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification.

View Article and Find Full Text PDF

Methyl-Jasmonate Functions as a Molecular Switch Promoting Cross-Talk between Pathways for the Biosynthesis of Isoprenoid Backbones Used to Modify Proteins in Plants.

Plants (Basel)

April 2024

Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France.

In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein.

View Article and Find Full Text PDF

Background: Protein farnesylation involves the addition of a 15-carbon polyunsaturated farnesyl group to proteins whose C-terminus ends with a CaaX motif. This post-translational protein modification is catalyzed by a heterodimeric protein, i.e.

View Article and Find Full Text PDF

Prenyltransferase gene expression reveals an essential role of prenylation for the inflammatory response in human gingival fibroblasts.

J Periodontol

December 2023

Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany.

Background: Prenyltrasferases (PTases) are a class of enzymes known to be responsible for promoting posttranslational modification at the carboxyl terminus of proteins containing a so-called CaaX-motif. The process is responsible for proper membrane localization and the appropriate function of several intracellular signaling proteins. Current research demonstrating the pathomechanistic importance of prenylation in inflammatory illnesses emphasizes the requirement to ascertain the differential expression of PT genes under inflammatory settings, particularly in periodontal disease.

View Article and Find Full Text PDF

The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!