Our group has shown in a phase II clinical trial that pomegranate juice (PJ) increases prostate specific antigen (PSA) doubling time in prostate cancer (CaP) patients with a rising PSA. Ellagitannins (ETs) are the most abundant polyphenols present in PJ and contribute greatly towards its reported biological properties. On consumption, ETs hydrolyze to release ellagic acid (EA), which is then converted by gut microflora to 3,8-dihydroxy-6H-dibenzo[b, d]pyran-6-one (urolithin A, UA) derivatives. Despite the accumulating knowledge of ET metabolism in animals and humans, there is no available data on the pharmacokinetics and tissue disposition of urolithins. Using a standardized ET-enriched pomegranate extract (PE), we sought to further define the metabolism and tissue distribution of ET metabolites. PE and UA (synthesized in our laboratory) were administered to C57BL/6 wild-type male mice, and metabolite levels in plasma and tissues were determined over 24 h. ET metabolites were concentrated at higher levels in mouse prostate, colon, and intestinal tissues as compared to other tissues after administration of PE or UA. We also evaluated the effects of PE on CaP growth in severe combined immunodeficient (SCID) mice injected subcutaneously with human CaP cells (LAPC-4). PE significantly inhibited LAPC-4 xenograft growth in SCID mice as compared to vehicle control. Finally, EA and several synthesized urolithins were shown to inhibit the growth of human CaP cells in vitro. The chemopreventive potential of pomegranate ETs and localization of their bioactive metabolites in mouse prostate tissue suggest that pomegranate may play a role in CaP treatment and chemoprevention. This warrants future human tissue bioavailability studies and further clinical studies in men with CaP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf071303g | DOI Listing |
Bioorg Med Chem
January 2025
Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Technetium-99m (Tc-99m) is the most employed radionuclide in nuclear imaging diagnostics worldwide for many diseases. The ideal physiochemical properties of Tc-99m (such as half-life and pure gamma energy) make it favorable for Single Photon Emission Computed Tomography (SPECT). In this study, we aim to expand the utilization of Tc-99m radiopharmaceutical toward prostate cancer diagnostics which is currently no FDA approved products and has been intensively examined for a potential candidate.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts;
Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.
View Article and Find Full Text PDFDis Model Mech
January 2025
Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli (E.
View Article and Find Full Text PDFJ Med Chem
January 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.
The treatment of castration-resistant prostate cancer (CRPC) remains a significant challenge, necessitating the development of new and promising therapeutic strategies. Utilizing molecular glue to degrade previously intractable cancer drivers represents an emerging and promising therapeutic approach to cancer treatment. In this study, we developed a novel CRBN-interacting molecular glue, (XYD049), which exhibits potent and selective degradation of G1 to S phase transition 1 (GSPT1), a well-known untargetable cancer driver in diverse cancer cells.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu Province, 214000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!