In an effort to develop better orthopedic implants, osteoblast (bone-forming cells) adhesion was determined on microscale patterns (30 microm lines) of carbon nanofibers placed on polymer substrates. Patterns of carbon nanofibers (CNFs) on a model polymer (polycarbonate urethane [PCU]) were developed using an imprinting method that placed CNFs in selected regions. Results showed the selective adhesion and alignment of osteoblasts on CNF patterns placed on PCU. Results also showed greater attraction forces between fibronectin and CNF (compared with PCU) patterns using atomic force microscope force-displacement curves. Because fibronectin is a protein that mediates osteoblast adhesion, these results provide a mechanism of why osteoblast adhesion was directed towards CNF patterns. Lastly, this study showed that the directed osteoblast adhesion on CNF patterns translated to enhanced calcium phosphate mineral deposition along linear patterns of CNFs on PCU. Since CNFs are conductive materials, this study formulated substrates that through electrical stimulation could be used in future investigations to further promote osteoblasts to deposit anisotropic patterns of calcium-containing mineral similar to that observed in long bones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2426764PMC
http://dx.doi.org/10.2147/nano.2006.1.1.65DOI Listing

Publication Analysis

Top Keywords

cnf patterns
12
osteoblast adhesion
12
patterns
9
selective adhesion
8
mineral deposition
8
carbon nanofibers
8
adhesion
5
adhesion mineral
4
deposition osteoblasts
4
osteoblasts carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!