RNA interference (RNAi) is a powerful tool to silence gene expression. Small interfering RNA (siRNA)-induced RNA degradation has been recently used as an antivirus agent to inhibit specific virus replication. Here, we showed that several siRNAs specific for conserved regions of influenza virus matrix (M2) and nucleocapsid protein (NP) genes could effectively inhibit expression of the corresponding viral protein. We also evaluated the antiviral potential of these siRNAs targeting M2 and NP of H5N1 avian influenza virus (AIV), which are essential to viral replication. We investigated the inhibitory effect of M2-specific siRNAs and NP-specific siRNAs on influenza A virus (H5N1, H1N1 and H9N2) replication in Madin-Darby canine kidney (MDCK) cells and BALB/c mice. The results showed that treatment with these siRNAs could specifically inhibit influenza A virus replication in MDCK cells (0.51-1.63 TCID(50) reduction in virus titers), and delivery of pS-M48 and pS-NP1383 significantly reduced lung virus titers in the infected mice (16-50-fold reduction in lung virus titers) and partially protected the mice from lethal influenza virus challenge (a survival rate of 4/8 for H1N1 virus-infected mice and 2/8 for H5N1 virus infected mice). Moreover, the treatment of pS-M48 and pS-NP1383 could suppress replication of different subtypes of influenza A viruses, including a H5N1 highly pathogenic avian isolate strain. The results provided a basis for further development of siRNA for prophylaxis and therapy of influenza virus infection in humans and animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2007.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!