Glucose-induced insulin release from pancreatic beta-cells relies largely on glucose metabolism and mitochondrial ATP synthesis. Inhibiting the mitochondrial Na(+)/Ca(2+) exchanger (mNCE) using 7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) has been suggested to enhance ATP synthesis and insulin secretion from rat islets by promoting mitochondrial Ca(2+) accumulation. In this study we examined the effects of CGP-37157 on human and mouse islet cells. Surprisingly, we found that insulin secretion from perifused islets was reduced by CGP-37157. Cytosolic Ca(2+) measurements revealed that CGP-37157 dose-dependently blocked glucose- and KCl-stimulated Ca(2+) signals in both human and mouse beta-cells. Conversely, CGP-37157 induced mitochondrial hyperpolarization, NAD(P)H rises, and triggered diazoxide- and nifedipine-sensitive cytosolic Ca(2+) transients in a subset of quiescent cells bathed in sub-stimulatory glucose, which is in accord with metabolic activation by the compound. Hence, while blocking mNCE with CGP-37157 may augment metabolism of human and mouse beta-cells, the propagation of metabolic signals is hampered by simultaneous inhibition of voltage-gated Ca(2+) influx, and ultimately insulin secretion. Efforts to use CGP-37157 or design related compounds for therapeutic purposes should take these competing effects into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2007.07.055 | DOI Listing |
Sci Adv
January 2025
Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the allele of the gene in Hispanic women shortly after a GDM pregnancy.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miller School of Medicine, Miami Florida.
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.
View Article and Find Full Text PDFElife
January 2025
Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties.
View Article and Find Full Text PDFCells
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.
Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!