We have used dynamic interfacial tension measurements to understand the structure of the ordered monolayer at the hexadecane/water interface induced by the presence of surfactant molecules. No abrupt changes in the interfacial tension (gamma) are observed during the expansion and contraction cycle below the interfacial ordering temperature (Ti) as observed for alkanes in contact with air. The lack of an abrupt change in gamma and the magnitude of this change during the expansion process indicate that the ordered phase may not be crystalline. The change in the interfacial tension is due to an increase in contact between water and hexadecane molecules and the disordering of the interfacial ordered layer. At low surfactant concentrations, the recovery of the interfacial tension is slower below Ti, suggesting that there is a critical surfactant concentration necessary to nucleate an ordered phase at the interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la7014463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!