We report the solvatochromic, viscosity-sensitive, and single-molecule photophysics of the fluorophores DCDHF-N-6 and DCDHF-A-6. These molecules are members of the dicyanomethylenedihydrofuran (DCDHF) class of single-molecule emitters that contain an amine electron donor and a DCDHF acceptor linked by a conjugated unit; DCDHF-N-6 and DCDHF-A-6 have naphthalene- and anthracene-conjugated linkers, respectively. These molecules maintain the beneficial photophysics of the phenylene-linked DCDHF (i.e., photostability, emission wavelength dependence on solvent polarity, and quantum yield sensitivity to solvent viscosity), yet offer absorption and emission at longer wavelengths that are more appropriate for cellular imaging. We demonstrate that these new fluorophores are less photolabile in an aqueous environment than several other commonly used dyes (rhodamine 6G, Texas Red, and fluorescein). Finally, we image single copies of the acene DCDHFs diffusing in the plasma membrane of living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678804PMC
http://dx.doi.org/10.1021/jp0712598DOI Listing

Publication Analysis

Top Keywords

single-molecule emitters
8
cellular imaging
8
dcdhf-n-6 dcdhf-a-6
8
photophysical properties
4
properties acene
4
dcdhf
4
acene dcdhf
4
dcdhf fluorophores
4
fluorophores long-wavelength
4
long-wavelength single-molecule
4

Similar Publications

Excited-State Engineering of Chalcogen-Bridged Chiral Molecules for Efficient OLEDs with Diverse Luminescence Mechanisms.

Angew Chem Int Ed Engl

December 2024

Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China.

The exploration of circularly polarized luminescence is important for advancing display and lighting technologies. Herein, by utilizing isomeric molecular engineering, a novel series of chiral molecules are designed to exploit both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) mechanisms for efficient luminescence. The cooperation of a small singlet-triplet energy gap, moderate spin-orbital coupling (SOC), and large oscillator strength enables efficient TADF emission, with photoluminescence quantum yields exceeding 90 %.

View Article and Find Full Text PDF

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

Digital-SMLM for precisely localizing emitters within the diffraction limit.

Nanophotonics

August 2024

Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.

Article Synopsis
  • Pinpointing emitter positions under the diffraction limit is essential for biomedical research but has been difficult until the introduction of single molecule localization microscopy (SMLM).
  • The new approach, Digital-SMLM, combines experimental datasets with deep learning, achieving 98% accuracy in predicting emitter numbers and positions, with a root mean square error as low as 14 nm.
  • Digital-SMLM not only outperforms existing methods like Deep-STORM but also enhances SMLM's capabilities, allowing for better analysis of high-density cellular structures.
View Article and Find Full Text PDF

Single molecules bridging two metallic electrodes can emit light through electroluminescence when subjected to a bias voltage. Typically, light emission in such devices results from transitions between molecular states, although in the presence of light-matter coupling, the emission can result from a transition between hybrid light-matter states. Here, we create single metal-molecule-metal junctions and simultaneously collect conductance and electroluminescence data using a scanning tunneling microscope (STM) equipped with a custom spectrometer.

View Article and Find Full Text PDF

The fluorescence quantum yield of organic NIR-emitters is typically limited by internal conversion (IC), restricting their applications in imaging and quantum technology. Here, we study the impact of deuteration and temperature on the emission properties of dibenzoterrylene (DBT) by bulk and single molecule spectroscopy. Based on simple photophysical modelling, we first clarify how IC affects the single molecule emission rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!