Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA has been shown to be efficacious in increasing (via anodal tDCS) or decreasing (via cathodal tDCS) the excitability of corticospinal projections to muscles of the hand. In this study, we examined whether tDCS at currents of 2 mA could effect similar changes in the excitability of deeper cortical structures that innervate muscles of the lower leg. Similar to the hand area, 10 min of stimulation with the anode over the leg area of the motor cortex increased the excitability of corticospinal tract projections to the tibialis anterior (TA) muscle, as reflected by an increase in the amplitude of the motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation. MEP amplitudes recorded at rest and during a background contraction were increased following anodal tDCS and remained elevated at 60 min compared to baseline values by 59 and 35%, respectively. However, in contrast to the hand, hyperpolarizing cathodal stimulation at equivalent currents had minimal effect on the amplitude of the MEPs recorded at rest or during background contraction of the TA muscle. These results suggest that it is more difficult to suppress the excitability of the leg motor cortex with cathodal tDCS than the hand area of the motor cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-007-1093-y | DOI Listing |
Pain Rep
February 2025
Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.
View Article and Find Full Text PDFJ Clin Sleep Med
January 2025
Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center, and University of Minnesota Medical School, Minneapolis, MN.
Study Objectives: To elucidate whether awake handedness in sexsomnia is retained during sleep to uncover potential clues about the underlying neurophysiologic mechanisms.
Methods: Participants' and observers' self-reported handedness during sexsomnia events.
Results: Case 1: A 22 y/o right-handed female with an eight-year history of nocturnal sleep-related masturbatory behavior (SMB) involving the left hand (LH) exclusively.
J Zhejiang Univ Sci B
December 2024
Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China.
White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.
View Article and Find Full Text PDFCerebellum
January 2025
Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500, Bron, France.
While the cerebellum's role in orchestrating motor execution and routines is well established, its functional role in supporting cognition is less clear. Previous studies claim that motricity and cognition are mapped in different areas of the cerebellar cortex, with an anterior/posterior dichotomy. However, most of the studies supporting this claim either use correlational methods (neuroimaging) or are lesion studies that did not consider central covariates (such as age, gender, treatment presence, and deep nuclei impairment) known to influence motor and cognitive recoveries in patients.
View Article and Find Full Text PDFNature
January 2025
Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
During motor learning, breaks in practice are known to facilitate behavioural optimizations. Although this process has traditionally been studied over long breaks that last hours to days, recent studies in humans have demonstrated that rapid performance gains during early motor sequence learning are most pronounced after very brief breaks lasting seconds to minutes. However, the precise causal neural mechanisms that facilitate performance gains after brief breaks remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!