This study examines signaling pathways activated by the mouse beta(3)-adrenoceptor (AR) expressed in Chinese hamster ovary cells at high (CHObeta(3)H) or low (CHObeta(3)L) levels. Functional responses included extracellular acidification rate (ECAR), cAMP accumulation, and p38 mitogen-activated protein kinase (MAPK) or extracellular signal-regulated protein kinase 1/2 (Erk1/2) phosphorylation. (-)-Isoproterenol and the beta(3)-AR agonist (R, R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]-propyl]1,3-benzodioxole-2,2-decarboxylate (CL316243) caused concentration-dependent increases in cAMP accumulation and ECAR in CHObeta(3)H and CHObeta(3)L cells. For cAMP accumulation, the beta(3)-AR ligand SR59230A was a partial agonist in CHObeta(3)H and an antagonist in CHObeta(3)L cells but for ECAR was an agonist at both expression levels. This suggested that SR59230A, which is normally regarded as an antagonist, can selectively activate pathways leading to ECAR. Examination of the pathways stimulated by (-)-isoproterenol, CL316243, and SR59230A for both ECAR and cAMP accumulation suggested that the cAMP pathway predominates in CHObeta(3)H cells, whereas p38 MAPK is a major contributor to ECAR in CHObeta(3)L cells and was the sole contributor to responses to SR59230A. Western blots of p38 MAPK and Erk1/2 phosphorylation confirmed that MAPKs are activated in CHObeta(3)H and CHObeta(3)L cells by CL316243 and SR59230A but that SR59230A has much higher efficacy. In addition, p38 MAPK phosphorylation displayed differences in drug potency and efficacy between CHObeta(3)H and CHObeta(3)L cells related to inhibition of the response by cAMP. Thus, CL316243 and SR59230A display reversed orders of efficacy for cAMP accumulation compared with Erk1/2 and p38 MAPK phosphorylation, providing a strong indication of ligand-directed signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.107.035337 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in , have shown promising therapeutic effects against AD in previous studies. : To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice.
View Article and Find Full Text PDFScience
January 2025
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Institute of Sports Science, Sichuan University, Chengdu, People's Republic of China; School of Physical Education and Sports, Sichuan University, Chengdu, People's Republic of China; Department of Physical Education, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, China. Electronic address:
The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!