AI Article Synopsis

  • The study investigates how a high-fat diet worsens obesity and insulin resistance in female mice lacking specific hormone receptors.
  • Hormonal imbalances were found to contribute significantly to weight gain and metabolic issues, particularly in certain fat depots.
  • The research highlights the role of adiponectin signaling in this process and shows how chronic high-fat diets lead to changes in fat distribution and inflammation without always causing overall obesity.

Article Abstract

Early obesity and late onset of insulin resistance associated with hormonal imbalances occur in FSH receptor-deficient follitropin receptor knockout female mice. This study tests the hypothesis that chronic high-fat diet aggravates obesogenic changes in a depot-specific manner and explores some molecular links of hormone imbalances with insulin resistance. In SV 129 mice, hormonal imbalances seem obligatory for exacerbation of diet-induced obesity. Visceral adiposity, glucose intolerance, and lipid disturbances in 9-month follitropin receptor knockout females were associated with decrease in adiponectin signaling. High-molecular-weight plasma adiponectin and adipose tissue adiponectin mRNA were decreased. Adiponectin receptors R1 and R2 mRNA was selectively altered in mesenteric fat but not periuterine fat. R2 decreased in the liver and R1 was higher in muscle. Whereas hepatic adenosine monophosphate T-activated protein kinase activity was down-regulated, both phosphoenolpyruvate carboxykinase and glucose-6-phosphatase enzymes were up-regulated. Longitudinally, diminishing sex hormone signaling in adipose tissue was associated with progressive down-regulation of adiponectin activity and gradual impaired glucose tolerance. Chronic high-fat diet in SV129 wild-type mice did not produce overt obesity but induced visceral fat depot changes accompanied by liver lipid accumulation, high cholesterol, and up-regulation of inflammation gene mRNAs. Thus, TNF-alpha, C-C motif chemokine receptor-2, and C-C motif chemokine ligand-2 were selectively elevated in mesenteric fat without altering glucose tolerance and adiponectin signaling. Our study highlights adiponectin signaling and regulation to be involved in hormone imbalance-induced insulin resistance and demonstrates selective visceral adipose depot alterations by chronic high-fat diet and induction of inflammatory genes.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-0647DOI Listing

Publication Analysis

Top Keywords

high-fat diet
16
insulin resistance
16
hormonal imbalances
12
chronic high-fat
12
adiponectin signaling
12
inflammatory genes
8
female mice
8
selective visceral
8
visceral adiposity
8
follitropin receptor
8

Similar Publications

Fatty Acid Esterification of Octacosanol Attenuates Triglyceride and Cholesterol Synthesis in Mice.

J Agric Food Chem

January 2025

Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.

This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.

View Article and Find Full Text PDF

Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.

View Article and Find Full Text PDF

Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD).

View Article and Find Full Text PDF

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

This study is the first to explore the effects of the novel yellow pigment monascinol (Msol) from red mold rice (RMR) on reducing body fat and to compare its effects with those of monascin (MS) and ankaflavin (AK). In a high-fat diet-induced rat model, different doses of RMR fermented rice (RL, RM, RH) and purified Msol, MS, and AK were administered over an 8-week period. The results showed that all treatment groups significantly reduced body weight and fat mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!