Beneficial effects of L-arginine nitric oxide-producing pathway in rats treated with alloxan.

J Physiol

Department of Physiology, Institute for Biological Research, Sinia Stankovi, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia.

Published: November 2007

In an attempt to elucidate molecular mechanisms and factors involved in beta cell regeneration, we evaluated a possible role of the L-arginine-nitric oxide (NO)-producing pathway in alloxan-induced diabetes mellitus. Diabetes was induced in male Mill Hill rats with a single alloxan dose (120 mg kg(-1)). Both non-diabetic and diabetic groups were additionally separated into three subgroups: (i) receiving L-arginine . HCl (2.25%), (ii) receiving L-NAME . HCl (0.01%) for 12 days as drinking liquids, and (iii) control. Treatment of diabetic animals started after diabetes induction (glucose level > or = 12 mmol l(-1)). We found that disturbed glucose homeostasis, i.e. blood insulin and glucose levels in diabetic rats was restored after L-arginine treatment. Immunohistochemical findings revealed that L-arginine had a favourable effect on beta cell neogenesis, i.e. it increased the area of insulin-immunopositive cells. Moreover, confocal microscopy showed colocalization of insulin and pancreas duodenum homeobox-1 (PDX-1) in both endocrine and exocrine pancreas. This increase in insulin-expressing cells was accompanied by increased cell proliferation (observed by proliferating cell nuclear antigen-PCNA immunopositivity) which occurred in a regulated manner since it was associated with increased apoptosis (detected by the TUNEL method). Furthermore, L-arginine enhanced both nuclear factor-kB (NF-kB) and neuronal nitric oxide synthase (nNOS) immunopositivities. The effect of L-arginine on antioxidative defence was observed especially in restoring to control level the diabetes-induced increase in glutathione peroxidase activity. In contrast to L-arginine, diabetic pancreas was not affected by L-NAME supplementation. In conclusion, the results suggest beneficial L-arginine effects on alloxan-induced diabetes resulting from the stimulation of beta cell neogenesis, including complex mechanisms of transcriptional and redox regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276988PMC
http://dx.doi.org/10.1113/jphysiol.2007.140277DOI Listing

Publication Analysis

Top Keywords

beta cell
12
l-arginine
8
alloxan-induced diabetes
8
cell neogenesis
8
cell
5
beneficial effects
4
effects l-arginine
4
l-arginine nitric
4
nitric oxide-producing
4
oxide-producing pathway
4

Similar Publications

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Genomic analysis of the main epidemiological lineages of in Mexico.

Front Cell Infect Microbiol

January 2025

Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico.

has emerged as a critical global health threat due to its exceptional survival skills in adverse environment and its ability to acquire antibiotic resistance, presenting significant challenges for infection treatment and control. The World Health Organization has classified carbapenem-resistant as a "Critical Priority" pathogen to guide research and the development of control and prevention strategies. Epidemiological surveillance methodologies provide the tools necessary for classifying into international clonal lineages, facilitating the analysis of molecular characteristics, global dissemination, and evolution.

View Article and Find Full Text PDF

Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).

Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!