Expansion of a (CGG)n sequence in the 5'-UTR of the FMR1 gene to >200-2000 repeats abolishes its transcription and initiates fragile X syndrome (FXS). By contrast, levels of FMR1 mRNA are 5-10-fold higher in FXS premutation carriers of >55-200 repeats than in normal subjects. Lack of a corresponding increase in the amount of the product FMRP protein in carrier cells suggest that (CGG)>55-200 tracts thwart translation. Here we report that a (CGG)99 sequence positioned upstream to reporter firefly (FL) gene selectively diminished mRNA translation in coupled and separate T7 promoter-driven in vitro transcription and translation systems. The (CGG)99 tract similarly depressed mRNA utilization in HEK293 human cells transfected with plasmids bearing FMR1 promoter-driven FL gene. A (CGG)33 RNA tract formed a largely RNase T1-resistant intramolecular secondary structure in the presence of K+ ions. Expression of the quadruplex (CGG)n disrupting proteins hnRNP A2 or CBF-A in HEK293 cells significantly elevated the efficacy of (CGG)99 FL mRNA translation whereas hnRNP A2 or CBF-A mutants lacking quadruplex (CGG)n disrupting activity did not. Taken together, our results suggest that secondary structures of (CGG)n in mRNA obstruct its translation and that quadruplex-disrupting proteins alleviate the translational block.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034458 | PMC |
http://dx.doi.org/10.1093/nar/gkm636 | DOI Listing |
Front Genet
November 2018
Biology Department, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
In eukaryotic cells, gene expression is highly regulated at many layers. Nascent RNA molecules are assembled into ribonucleoprotein complexes that are then released into the nucleoplasmic milieu and transferred to the nuclear pore complex for nuclear export. RNAs are then either translated or transported to the cellular periphery.
View Article and Find Full Text PDFMol Biol Cell
June 2011
Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
In neurons certain mRNA transcripts are transported to synapses through mechanisms that are not fully understood. Here we report that the heterogeneous nuclear ribonucleoprotein CBF-A (CArG Box binding Factor A) facilitates dendritic transport and localization of activity-regulated cytoskeleton-associated protein (Arc), brain-derived neurotrophic factor (BDNF), and calmodulin-dependent protein kinase II (CaMKIIα) mRNAs. We discovered that, in the adult mouse brain, CBF-A has a broad distribution.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2010
Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and Centre BioMed, Université du Québec à Montréal, Montréal, Québec, Canada.
Human Apolipoprotein D (apoD) is upregulated under several stress conditions and pathological situations such as neurodegenerative diseases and cancers. We previously showed that apoD mRNA expression is induced in growth-arrested cells and demonstrated the specific binding of nuclear proteins to the region -514 to -475 of the promoter. Such region contains a pair of Serum Responsive Elements (SRE), an Ets-Binding Site (EBS) and a Glucocorticoid Responsive Element (GRE).
View Article and Find Full Text PDFRNA Biol
February 2010
Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
Upon nuclear export, RNP particles are either localized to polysomes or further assembled into larger RNA granules which are transported to the cellular periphery for localized translation. These mechanisms are important for asymmetric mRNA and protein distribution and have profound impact on cellular physiology. mRNA transport and localization requires cis-acting elements and cellular transacting factors.
View Article and Find Full Text PDFNucleic Acids Res
May 2009
Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
The 5' untranslated region of the FMR1 gene which normally includes 4-55 d(CGG) repeats expands to > 55-200 repeats in carriers of fragile X syndrome premutation. Although the levels of premutation FMR1 mRNA in carrier cells are 5-10-fold higher than normal, the amount of the product FMR protein is unchanged or reduced. We demonstrated previously that premutation r(CGG)(n) tracts formed quadruplex structures that impeded translation and lowered the efficiency of protein synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!