Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using a model of integrin-triggered random migration of T cells, we show that stimulation of LFA-1 integrins leads to the activation of Rap1 and Rap2 small GTPases. We further show that Rap1 and Rap2 have distinct roles in adhesion and random migration of these cells and that an adapter protein from the Ras association domain family (Rassf), RAPL, has a role downstream of Rap2 in addition to its link to Rap1. Further characterization of the RAPL protein and its interactions with small GTPases from the Ras family shows that RAPL forms more stable complexes with Rap2 and classical Ras proteins compared with Rap1. The different interaction pattern of RAPL with Rap1 and Rap2 is not affected by the disruption of the C-terminal SARAH domain that we identified as the alpha-helical region responsible for RAPL dimerization in vitro and in cells. Based on mutagenesis and three-dimensional modeling, we propose that interaction surfaces in RAPL-Rap1 and RAPL-Rap2 complexes are different and that a single residue in the switch I region of Rap proteins (residue 39) contributes considerably to the different kinetics of these protein-protein interactions. Furthermore, the distinct role of Rap2 in migration of T cells is lost when this critical residue is converted to the residue present in Rap1. Together, these observations suggest a wider role for Rassf adapter protein RAPL and Rap GTPases in cell motility and show that subtle differences between highly similar Rap proteins could be reflected in distinct interactions with common effectors and their cellular function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M704361200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!