Copper, zinc and iron are essential metals for different physiological functions, even though their excess can lead to biological damage. This review provides a background of toxicity related to copper, iron and zinc excess, biological mechanisms of their homeostasis and their respective roles in the apoptotic process. The antioxidant action of metallothionein has been highlighted by summarizing the most important findings that confirm the role of zinc in cellular protection in relation to metallothionein expression and apoptotic processes. In particular, we show that a complex and efficient antioxidant system, the induction of metallothionein and the direct action of zinc have protective roles against oxidative damage and the resulting apoptosis induced by metals with redox proprieties. In addition, to emphasize the protective effects of Zn and Zn-MT in Cu and Fe-mediated oxidative stress-dependent apoptosis, some aspects of apoptotic cell death are shown. The most widely used cytochemical techniques also have been examined in order to critically evaluate the available data from a methodological point of view. The observations on the role of Zn and MT could potentially develop new applications for this metal and MT in biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2007.07.010DOI Listing

Publication Analysis

Top Keywords

zinc
5
zinc antioxidant
4
antioxidant systems
4
metallothionein
4
systems metallothionein
4
metallothionein metal
4
metal mediated-apoptosis
4
mediated-apoptosis biochemical
4
biochemical cytochemical
4
cytochemical aspects
4

Similar Publications

Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.

View Article and Find Full Text PDF

Advances on jarosite residue detoxification and reutilization: a review.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.

Jarosite residues are typical hazardous waste byproducts generated during the iron removal process in hydrometallurgical solutions. The jarosite process is widely used for iron removal in zinc hydrometallurgy; jarosite disposal has become a significant barrier to sustainable development in the industry. During this process, jarosite residues entrain and co-precipitate with heavy metals, which are hazardous but valuable.

View Article and Find Full Text PDF

Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity relationships (SAR) to derive models that describe the selectivity and activity of inhibitors targeting Adenosine receptors. Structural information for 16,312 inhibitors was collected from BindingDB and analyzed using machine learning methods.

View Article and Find Full Text PDF

Dendrite-free Zn anode induced by Sn/NC towards highly efficient Zn-ion batteries.

Chem Commun (Camb)

January 2025

Institute of Clean Energy and Advanced Nanocatalysis (iClean), School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.

Herein, Sn nanoparticles supported on N-doped carbon (Sn/NC) were constructed by a g-CN assisted strategy for the interface layer of Zn anodes in Zn-ion batteries. The presence of Sn/NC effectively regulates the zinc plating/stripping process, which makes Sn/NC@Zn outstanding in both symmetrical and full cells.

View Article and Find Full Text PDF

Cryo-EM structure of human TUT1:U6 snRNA complex.

Nucleic Acids Res

January 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.

U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!