Downstream intronic splicing enhancers.

FEBS Lett

Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Centre de Développement des Biotechnologies (CDB) de Sherbrooke 3201, Rue Jean-Mignault, Sherbrooke, Québec, Canada.

Published: September 2007

Alternative splicing leads to multiple proteins from individual genes and the most common deviation from the norm is precise exon omission. Mutations that cause this can be found deep in introns, especially downstream of the cassette exon. This review summarises what is known about these intronic splicing enhancers and their RNA-binding proteins that cause spliceosome assembly on the upstream exon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.08.012DOI Listing

Publication Analysis

Top Keywords

intronic splicing
8
splicing enhancers
8
downstream intronic
4
enhancers alternative
4
alternative splicing
4
splicing leads
4
leads multiple
4
multiple proteins
4
proteins individual
4
individual genes
4

Similar Publications

Direct repeats found in the vicinity of intron splice sites.

Naturwissenschaften

January 2025

Department of Biology, University of Washington, Seattle, WA, 98195, USA.

Four main classes of introns (group I, group II, spliceosomal, and archaeal) have been reported for all major types of RNA from nuclei and organelles of a wide range of taxa. When and how introns inserted within the genic regions of genomes, however, is often unclear. Introns were examined from Archaea, Bacteria, and Eukarya.

View Article and Find Full Text PDF

Case Presentation: A girl aged 2 years and 5 months presented to the hospital with chief complaints of intermittent fever and weakness of the left limb for more than 1 month. The child had transient urticaria appearing on her face for 5 days. The inflammatory biomarkers were significantly increased.

View Article and Find Full Text PDF

Novel De Novo Intronic Variant of SYNGAP1 Associated With the Neurodevelopmental Disorders.

Mol Genet Genomic Med

February 2025

Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.

Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.

View Article and Find Full Text PDF

A deep intronic variant associated with X-linked hypophosphatemia in a Finnish family.

JBMR Plus

February 2025

Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.

Hypophosphatemic rickets is a rare bone disease characterized by short stature, bone deformities, impaired bone mineralization, and dental problems. Most commonly, hypophosphatemic rickets is caused by pathogenic variants in the X-chromosomal gene, but autosomal dominant and recessive forms also exist. We investigated a Finnish family in which the son (index, 29 yr) and mother (56 yr) had hypophosphatemia since childhood.

View Article and Find Full Text PDF

We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!