RNAi screening in mammalian cells has become a valuable method to identify and describe genetic relationships in both basic biology and disease mechanisms. Multiple efforts are underway to standardize how RNAi screening data are reported, including establishing experimental criteria for defining a validated hit from a screen, and the extent to which the primary screening data themselves are reported. These discussions have identified several key areas that require consistency, or at least understanding, before RNAi screening data can be used generally. Successfully addressing these targeted areas would broaden the use of RNAi screening data beyond advancing one or a few hits into validation experiments, to enable verification of primary screening data, and to facilitate comparisons between sample groups based on screening profiles. Areas for improving RNAi screening include general guidelines for validating hits from screens, the creation of standardized reporting structures for RNAi screening data, such as Minimum Information About an RNAi Experiment (MIARE), statistical methods for analyzing screening data that explicitly account for differences between screening RNAi reagents versus small molecules, and technical improvements to RNAi screening that improve the analysis of gene knockdowns, including multiparametric approaches, such as high-content screening. This review will discuss how these approaches can improve RNAi screening data at the community level and for an individual researcher trying to manage an RNAi screen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/14622416.8.8.1037 | DOI Listing |
Plant Physiol
January 2025
College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Tango Therapeutics (United States), Boston, United States.
Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, United States.
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan.
Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
Primary ovarian insufficiency (POI) is a disease defined as a reduction in ovarian function under the age of 40 and represents the main cause of female infertility. In recent years, many genetic mutations associated with POI have been identified using high-throughput sequencing technology. However, one big challenge today is to determine the disease-causing gene associations through functional assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!