Aims: Paclitaxel is one of the most effective antiproliferative agents and it has been applied in the development of drug-eluting stents. There are difficulties, however, in using paclitaxel in clinical applications owing to its poor solubility and side effects. We have synthesized nanoparticles of biodegradable polymers for the effective and sustainable delivery of paclitaxel and other antiproliferative agents for restenosis treatment.

Methods & Results: Paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by a modified solvent extraction/evaporation method with D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) or polyvinyl alcohol (PVA) as an emulsifier. Drug-loaded nanoparticles were characterized for size and size distribution, surface morphology, surface charge, drug-encapsulation efficiency and in vitro drug-release kinetics. Cellular uptake of fluorescent nanoparticles was investigated in vitro in coronary artery smooth muscle cells and in vivo in the carotid arteries of rabbits. The antiproliferative effects of the nanoparticle formulations were assessed in vitro in close comparison with Taxol((R)). Both the PVA- and TPGS-emulsified nanoparticles have similar size and size distribution, surface morphology and dispersion stability and showed great advantages over paclitaxel in in vitro cellular uptake and cytotoxicity than Taxol. The TPGS-emulsified nanoparticle formulation has higher drug-encapsulation efficiency, cellular uptake and cytotoxicity than the PVA-emulsified nanoparticle formulation. IC(50) in 24-h culture with coronary artery smooth muscle cells is 748 ng/ml for paclitaxel, 708 ng/ml for PVA-emulsified nanoparticles and 474 ng/ml for TPGS-emulsified nanoparticles, respectively.

Conclusion: TPGS-emulsified PLGA nanoparticles have great potential for the effective and sustainable delivery of antiproliferative agents and for the development of nanoparticle-coated stents, which may become the third generation of cardiovascular stents.

Download full-text PDF

Source
http://dx.doi.org/10.2217/17435889.2.3.333DOI Listing

Publication Analysis

Top Keywords

antiproliferative agents
12
cellular uptake
12
nanoparticles
9
polylactic-co-glycolic acid
8
effective sustainable
8
sustainable delivery
8
plga nanoparticles
8
size size
8
size distribution
8
distribution surface
8

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

Limited knowledge exists regarding biomarkers that predict treatment response in Lupus nephritis (LN). We aimed to identify potential molecular biomarkers to predict treatment response in patients with LN. We enrolled 66 patients with active LN who underwent renal biopsy upon enrollment.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!