We report a case of an 8-year-old boy with laryngeal edema and vocal cord paralysis due to lithium battery ingestion. He had ingested a lithium battery of a television remote controller, and was admitted to our hospital. He was suffering from wheezing and retractive respiration with crying. The foreign body was removed under general anesthesia about two hours after the ingestion. It was a 3 volt lithium battery of 20 millimeters in diameter. Endoscopy showed chemical burn of the postcricoid area and severe edema of the laryngeal arytenoids. Twelve days later we confirmed healing of edema and extubated the tracheal tube, but endoscopy showed bilateral vocal fold paralysis. He had no difficulty in breathing and eating but the vocal cord paralysis remained. Lithium batteries ingestion may cause severe airway injury in a short period because of their large size and high voltage. Immediate removal and careful management are required.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lithium battery
16
vocal cord
12
cord paralysis
12
edema vocal
8
paralysis lithium
8
battery ingestion
8
lithium
5
[laryngeal edema
4
vocal
4
paralysis
4

Similar Publications

Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).

View Article and Find Full Text PDF

MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.

View Article and Find Full Text PDF

Valence Electron: A Descriptor of Spinel Sulfides for Sulfur Reduction Catalysis.

Adv Mater

January 2025

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Catalysts are essential for achieving high-performance lithium-sulfur batteries. The precise design and regulation of catalytic sites to strengthen their efficiency and robustness remains challenging. In this study, spinel sulfides and catalyst design principles through element doping are investigated.

View Article and Find Full Text PDF

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Poly(ethylene oxide) (PEO)-based solid-state polymer electrolyte (SPE) is a promising candidate for the next generation of safer lithium-metal batteries. However, the serious side reaction between PEO and lithium metal and the uneven deposition of lithium ions lead to the growth of lithium dendrites and the rapid decline of battery cycle life. Building a LiF-rich solid electrolyte interface (SEI) layer is considered to be an effective means to solve the above problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!