Presynaptic inhibitory G protein-coupled receptors (GPCRs) can decrease neurotransmission by inducing interaction of Gbetagamma with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. We have shown that this action of Gbetagamma requires the carboxyl terminus of the 25-kDa synaptosome-associated protein (SNAP25) and is downstream of the well known inhibition of Ca2+ entry through voltage-gated calcium channels. We propose a mechanism in which Gbetagamma and synaptotagmin compete for binding to the SNARE complex. Here, we characterized the Gbetagamma interaction sites on syntaxin1A and SNAP25 and demonstrated an overlap of the Gbetagamma- and synaptotagmin I -binding regions on each member of the SNARE complex. Synaptotagmin competes in a Ca2+-sensitive manner with binding of Gbetagamma to SNAP25, syntaxin1A, and the assembled SNARE complex. We predict, based on these findings, that at high intracellular Ca2+ concentrations, Ca2+-synaptotagmin I can displace Gbetagamma binding and the Gbetagamma-dependent inhibition of exocytosis can be blocked. We tested this hypothesis in giant synapses of the lamprey spinal cord, where 5-HT works via Gbetagamma to inhibit neurotransmission (Blackmer et al., 2001). We showed that increased presynaptic Ca2+ suppresses the 5-HT- and Gbetagamma-dependent inhibition of exocytosis. We suggest that this effect may be due to Ca2+-dependent competition between Gbetagamma and synaptotagmin I for SNARE binding. This type of dynamic regulation may represent a novel mechanism for modifying transmitter release in a graded manner based on the history of action potentials that increase intracellular Ca2+ concentrations and of inhibitory signals through G(i)-coupled GPCRs.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.107.039446DOI Listing

Publication Analysis

Top Keywords

snare complex
20
gbetagamma
9
soluble n-ethylmaleimide-sensitive
8
n-ethylmaleimide-sensitive factor
8
factor attachment
8
attachment protein
8
protein receptor
8
receptor snare
8
gbetagamma synaptotagmin
8
intracellular ca2+
8

Similar Publications

Objectives: Alzheimer's disease (AD) is a complex neurodegenerative disorder that primarily affects elderly individuals. This study aimed to elucidate the intricate mechanisms underlying AD in elderly patients compared with healthy aged individuals using high-throughput RNA sequencing (RNA-seq) data and next-generation knowledge discovery methods (NGKD), with a focus on identifying potential therapeutic agents.

Methods: High-throughput RNA-seq data were obtained from the Gene Expression Omnibus (GEO) database (accession number: GSE104704).

View Article and Find Full Text PDF

High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.

View Article and Find Full Text PDF

The use of the snare catheter (SC) technique has been described in the field of interventional cardiology, in particular in the retrieval of a lost device, for example, a dislodged coronary stent, broken coronary wire, and so forth. In the transcatheter aortic valve replacement (TAVR) procedure, some cases have been observed where the anatomy is challenging or there are scenarios where some complications occur during the procedure, which make it necessary to use some tools to achieve the success of the procedure. The SC has shown are very useful either to achieve the ascent of the valve to the annular plane in complex anatomies or as a rescue measure in the event of complications that may arise after valve implantation.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

One of the major issues encountered in patients undergoing evaluation for Transcatheter mitral valve replacement (TMVR) is the risk of Left ventricular outflow tract (LVOT) obstruction. LVOT obstruction is a catastrophic complication of TMVR, the result of displacement of the anterior mitral valve leaflet (AML) toward the interventricular septum. Several strategies to mitigate the risk of LVOT obstruction have been described and include percutaneous laceration of the anterior mitral leaflet (LAMPOON), alcohol septal ablation, trans-atrial leaflet modification (SITRAL) and Balloon Assisted Translocation of Mitral Anterior leaflet to prevent LVOT obstruction (BATMAN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!