P2Y receptor regulation of sodium transport in human mammary epithelial cells.

Am J Physiol Cell Physiol

Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.

Published: November 2007

Primary human mammary epithelial (HME) cells were immortalized by stable, constitutive expression of the catalytic subunit of human telomerase. Purinergic receptors were identified by RT-PCR and quantitative RT-PCR from mRNA isolated from primary and immortalized cells grown to confluence on membrane filters. Several subtypes of P2Y receptor mRNA were identified including P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptors. RT-PCR experiments also revealed expression of A(2b) adenosine receptor mRNA in primary and immortalized cells. Confluent monolayers of HME cells exhibited a basal short-circuit current (I(sc)) that was abolished by amiloride and benzamil. When monolayers were cultured in the presence of hydrocortisone, mRNA expression of Na(+) channel (ENaC) alpha-, beta-, and gamma-subunits increased approximately threefold compared with that in cells grown without hydrocortisone. In addition, basal benzamil-sensitive Na(+) transport was nearly twofold greater in hydrocortisone-treated monolayers. Stimulation with UTP, UDP, or adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) produced increases in intracellular calcium concentration that were significantly reduced following pretreatment with the calcium-chelating agent BAPTA-AM. Concentration-response relationships indicated that the rank order of potency for these agonists was UTP > UDP > ATPgammaS. Basolateral stimulation with UTP produced a rapid but transient increase in I(sc) that was significantly reduced if cells were pretreated with BAPTA-AM or benzamil. Moreover, basolateral treatment with either charybdotoxin or clotrimazole significantly inhibited the initial UTP-dependent increase in I(sc) and eliminated the sustained current response. These results indicate that human mammary epithelial cells express multiple P2 receptor subtypes and that Ca(2+) mobilization evoked by P2Y receptor agonists stimulates Na(+) absorption by increasing the activity of Ca(2+)-activated K(+) channels located in the basolateral membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00068.2007DOI Listing

Publication Analysis

Top Keywords

p2y receptor
12
human mammary
12
mammary epithelial
12
cells
8
epithelial cells
8
hme cells
8
primary immortalized
8
immortalized cells
8
cells grown
8
receptor mrna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!