AI Article Synopsis

  • Ambient GABA plays a crucial role in modulating the firing patterns of retinal ganglion cells (RGCs) and starburst amacrine cells (SACs) by activating extrasynaptic GABA(A) receptors, especially during specific developmental stages.
  • Tonic activation of GABA(A) receptors effectively blocks spontaneous activity in RGCs and SACs, reducing excitability and impacting intracellular calcium levels, which are linked to retinal waves.
  • GABA(A) receptor antagonists affect SACs differently than RGCs and do not stop retinal waves, suggesting that different mechanisms are at play, with implications for understanding how various drugs and neurohormones could influence neural circuit development.

Article Abstract

Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA(A) receptors. Here, we demonstrate that during a developmental period when activation of GABA(A) receptors causes membrane depolarization, tonic activation of GABA(A) receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA(A) receptor agonist muscimol blocked spontaneous correlated increases in intracellular calcium concentration and compound postsynaptic currents in RGCs associated with retinal waves. In addition, GABA(A) receptor agonists activated a tonic current in RGCs that significantly reduced their excitability. Using a transgenic mouse in which green fluorescent protein is expressed under the metabotropic glutamate receptor subtype 2 promoter to target recordings from SACs, we found that GABA(A) receptor agonists blocked compound postsynaptic currents and also activated a tonic current. GABA(A) receptor antagonists reduced the holding current in SACs but not RGCs, indicating that ambient levels of GABA tonically activate GABA(A) receptors in SACs. GABA(A) receptor antagonists did not block retinal waves but did alter the frequency and correlation structure of spontaneous RGC firing. Interestingly, the drug aminophylline, a general adenosine receptor antagonist used to block retinal waves, induced a tonic GABA(A) receptor antagonist-sensitive current in outside-out patches excised from RGCs, indicating that aminophylline exerts its action on retinal waves by direct activation of GABA(A) receptors. These findings have implications for how various neuroactive drugs and neurohormones known to modulate extrasynaptic GABA(A) receptors may influence spontaneous firing patterns that are critical for the establishment of adult neural circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933517PMC
http://dx.doi.org/10.1523/JNEUROSCI.1293-07.2007DOI Listing

Publication Analysis

Top Keywords

gabaa receptors
24
gabaa receptor
24
retinal waves
16
gabaa
13
activation gabaa
12
structure spontaneous
8
spontaneous activity
8
firing patterns
8
adult neural
8
neural circuits
8

Similar Publications

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.

Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).

View Article and Find Full Text PDF

γ-Aminobutyric acid type A (GABA) receptors are ligand-gated ion channels in the central nervous system with largely inhibitory function. Despite being a target for drugs including general anesthetics and benzodiazepines, experimental structures have yet to capture an open state of classical synaptic α1β2γ2 GABA receptors. Here, we use a goal-oriented adaptive sampling strategy in molecular dynamics simulations followed by Markov state modeling to capture an energetically stable putative open state of the receptor.

View Article and Find Full Text PDF

: Sleep, a process physiologically vital for mental health, faces disruptions in various sleep disorders linked to metabolic and neurodegenerative risks. seed (Zizy) has long been recognized for its diverse pharmacological attributes, including analgesic, sedative, insomnia, and anxiety alleviation. : In this study, the sleep-prolonging effects of Zizy extract (100, 200 mg/kg), along with their characterizing compounds jujuboside A (JuA) (5, 10 mg/kg), were evaluated in a mouse model under a pentobarbital-induced sleep.

View Article and Find Full Text PDF

Background: αδ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for αδ-1) and CACNA2D3 (coding for αδ-3) genes were identified in patients with autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!