Sulfated chitooligosaccharides as prolyl endopeptidase inhibitor.

Int J Biol Macromol

Division of Food Science and Aqualife Medicine, Chonnam National University, Yosu 550-749, Republic of Korea.

Published: December 2007

Prolyl endopeptidase (PEP, EC 3.4.21.26) is a proline-specific endopeptidase with a serine-type mechanism, which digests small peptide-like hormones, neuroactive peptides, and various cellular factors. PEP has been involved in neurodegenerative disorders, therefore, the discovery of PEP inhibitors can revert memory loss caused by amnesic compounds. In this study, we prepared hetero-chitooligosaccharides (COSs) with different molecular sizes using ultrafiltration (UF) membrane reactor system from hetero-chitosan with different degrees of deacetylation (DD; 90%, 75% and 50% deacetylation), and synthesized sulfated COSs (SCOSs). PEP inhibitory activities of SCOSs were evaluated and the results showed that 50% deacetylated SCOSs (50-SCOSs) exhibited higher inhibitory activities than those of 90% and 75% deacetylated SCOSs (90-SCOSs and 75-SCOSs). Among the 50-SCOSs (50-SCOS I, 5000-10,000Da; 50-SCOS II, 1000-5000Da; 50-SCOS III, below 1000Da), 50-SCOS II possessed the highest inhibitory activity and IC(50) value was 0.38mg/ml. Kinetics studies with 50-SCOS II indicated a competitive enzyme inhibition with a K(i) value of 0.78mg/ml. It was concluded that the 50-SCOS II may be useful for PEP inhibitor and for developing a new type PEP inhibitor from carbohydrate based materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2007.07.003DOI Listing

Publication Analysis

Top Keywords

prolyl endopeptidase
8
90% 75%
8
inhibitory activities
8
deacetylated scoss
8
pep inhibitor
8
pep
6
50-scos
6
sulfated chitooligosaccharides
4
chitooligosaccharides prolyl
4
endopeptidase inhibitor
4

Similar Publications

In proteomics, postproline cleaving enzymes (PPCEs), such as prolyl endopeptidase (PEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using PEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed PEP sources and conditions that could affect this cleavage preference.

View Article and Find Full Text PDF

Targeted degradation of Pin1 by protein-destabilizing compounds.

Proc Natl Acad Sci U S A

November 2024

Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521.

The concept of targeted protein degradation is at the forefront of modern drug discovery, which aims to eliminate disease-causing proteins using specific molecules. In this paper, we explored the idea to design protein degraders based on the section of ligands that cause protein destabilization, hence that facilitate the cellular breakdown of the target. Our studies present covalent agents targeting Pin1, a cis-trans prolyl isomerase that plays a crucial role in tumorigenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * A study on S9 peptidase from Bacillus subtilis (S9bs) has confirmed its carboxypeptidase activity, which was previously unclear, highlighting key structural elements essential for this function.
  • * The research also revealed S9bs forms stable tetramers and identified its molecular arrangement, providing insights that could aid in therapeutic and drug design related to S9 family enzymes.
View Article and Find Full Text PDF

BACKGROUND X-PROLYL AMINOPEPTIDASE 3: (XPNPEP3) mutations are known to cause nephronophthisis-like nephropathy-1 (NPHPL1), a rare autosomal-recessive kidney disease characterized by progressive kidney failure and cystic kidney disease in childhood. The full phenotypic spectrum associated with mutations in XPNPEP3 is not fully elucidated. CASE PRESENTATION: A 13-year-old Chinese female patient with intellectual disability presented with a 2-year history of convulsions and fatigue, with a recent episode of swelling, breathlessness, and nocturnal dyspnea lasting 10 days.

View Article and Find Full Text PDF

This current study aims to analyze the potential bioactivities possessed by the enzymatic hydrolysates of commercial bovine, porcine, and tilapia gelatins using bioinformatics in combination with in vitro and in vivo studies. The hydrolysate with superior inhibition of angiotensin converting enzyme (ACE) activity was used to treat the D-galactose (DG)-induced amnesic mice. In silico digestion of the gelatins led to the identification of peptide sequences with potential antioxidant, ACE-inhibitory, and anti-amnestic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!